Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Strategy discovered to prevent Alzheimer's-associated traffic jams in the brain

Tau reduction prevents amyloid proteins from disrupting transport of vital cargoes between brain cells

Amyloid beta (Áâ) proteins, widely thought to cause Alzheimer's disease (AD), block the transport of vital cargoes inside brain cells. Scientists at the Gladstone Institute of Neurological Disease (GIND) have discovered that reducing the level of another protein, tau, can prevent Aâ from causing such traffic jams.

Neurons in the brain are connected to many other neurons through long processes called axons. Their functions depend on the transport of diverse cargoes up and down these important pipelines. Particularly important among the cargoes are mitochondria, the energy factories of the cell, and proteins that support cell growth and survival. Aâ proteins, which build up to toxic levels in the brains of people with AD, impair the axonal transport of these cargoes.

"We previously showed that suppressing the protein tau can prevent Aâ from causing memory deficits and other abnormalities in mouse models of AD," explained Lennart Mucke, MD, GIND director and senior author of the study. "We wondered whether this striking rescue might be caused, at least in part, by improvements in axonal transport."

The scientists explored this possibility in mouse neurons grown in culture dishes. Neurons from normal mice or from mice lacking one or both tau genes were exposed to human Aâ proteins. The Aâ slowed down axonal transport of mitochondria and growth factor receptors, but only in neurons that produced tau and not in neurons that lacked tau. In the absence of the Aâ challenge, tau reduction had no effect on axonal transport.

"We are really excited about these results," said Keith Vossel, MD, lead author of the study. "Whether tau affects axonal transport or not has been a controversial issue, and nobody knew how to prevent Aâ from impairing this important function of neurons. Our study shows that tau reduction accomplishes this feat very effectively."

"Some treatments based on attacking Aâ have recently failed in clinical trials, and so, it is important to develop new strategies that could make the brain more resistant to Aâ and other AD-causing factors," said Dr. Mucke. "Tau reduction looks promising in this regard, although a lot more work needs to be done before such approaches can be explored in humans."

The team also included Gladstone's Jens Brodbeck, Aaron Daub, Punita Sharma, and Steven Finkbeiner. Kai Zhang and Bianxiao Cui of Stanford's chemistry department also contributed to the research.

The NIH and the McBean Family Foundation supported this work.

Lennart Mucke's primary affiliation is with the Gladstone Institute of Neurological Disease, where he is Director/Senior Investigator and where his laboratory is located and his research is conducted. He is also the Joseph B. Martin Distinguished Professor of Neuroscience at UCSF.

The Gladstone Institutes is a nonprofit, independent research and educational institution, consisting of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology, and the Gladstone Institute of Neurological Disease. Independent in its governance, finances and research programs, Gladstone shares a close affiliation with UCSF through its faculty, who hold joint UCSF appointments.

Valerie Tucker | EurekAlert!
Further information:

Further reports about: Disease GIND Gladstone Tau-Protein UCSF brain cell mouse model neurological traffic jam

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>