Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strategy discovered to prevent Alzheimer's-associated traffic jams in the brain

10.09.2010
Tau reduction prevents amyloid proteins from disrupting transport of vital cargoes between brain cells

Amyloid beta (Áâ) proteins, widely thought to cause Alzheimer's disease (AD), block the transport of vital cargoes inside brain cells. Scientists at the Gladstone Institute of Neurological Disease (GIND) have discovered that reducing the level of another protein, tau, can prevent Aâ from causing such traffic jams.

Neurons in the brain are connected to many other neurons through long processes called axons. Their functions depend on the transport of diverse cargoes up and down these important pipelines. Particularly important among the cargoes are mitochondria, the energy factories of the cell, and proteins that support cell growth and survival. Aâ proteins, which build up to toxic levels in the brains of people with AD, impair the axonal transport of these cargoes.

"We previously showed that suppressing the protein tau can prevent Aâ from causing memory deficits and other abnormalities in mouse models of AD," explained Lennart Mucke, MD, GIND director and senior author of the study. "We wondered whether this striking rescue might be caused, at least in part, by improvements in axonal transport."

The scientists explored this possibility in mouse neurons grown in culture dishes. Neurons from normal mice or from mice lacking one or both tau genes were exposed to human Aâ proteins. The Aâ slowed down axonal transport of mitochondria and growth factor receptors, but only in neurons that produced tau and not in neurons that lacked tau. In the absence of the Aâ challenge, tau reduction had no effect on axonal transport.

"We are really excited about these results," said Keith Vossel, MD, lead author of the study. "Whether tau affects axonal transport or not has been a controversial issue, and nobody knew how to prevent Aâ from impairing this important function of neurons. Our study shows that tau reduction accomplishes this feat very effectively."

"Some treatments based on attacking Aâ have recently failed in clinical trials, and so, it is important to develop new strategies that could make the brain more resistant to Aâ and other AD-causing factors," said Dr. Mucke. "Tau reduction looks promising in this regard, although a lot more work needs to be done before such approaches can be explored in humans."

The team also included Gladstone's Jens Brodbeck, Aaron Daub, Punita Sharma, and Steven Finkbeiner. Kai Zhang and Bianxiao Cui of Stanford's chemistry department also contributed to the research.

The NIH and the McBean Family Foundation supported this work.

Lennart Mucke's primary affiliation is with the Gladstone Institute of Neurological Disease, where he is Director/Senior Investigator and where his laboratory is located and his research is conducted. He is also the Joseph B. Martin Distinguished Professor of Neuroscience at UCSF.

The Gladstone Institutes is a nonprofit, independent research and educational institution, consisting of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology, and the Gladstone Institute of Neurological Disease. Independent in its governance, finances and research programs, Gladstone shares a close affiliation with UCSF through its faculty, who hold joint UCSF appointments.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

Further reports about: Disease GIND Gladstone Tau-Protein UCSF brain cell mouse model neurological traffic jam

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

Scientists on the road to discovering impact of urban road dust

18.01.2018 | Ecology, The Environment and Conservation

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>