Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strategy Discovered to Activate Genes that Suppress Tumors and Inhibit Cancer

22.05.2012
A team of scientists has developed a promising new strategy for "reactivating" genes that cause cancer tumors to shrink and die.
The researchers hope that their discovery will aid in the development of an innovative anti-cancer drug that effectively targets unhealthy, cancerous tissue without damaging healthy, non-cancerous tissue and vital organs. The research will be published in the Journal of Biological Chemistry.

The team, led by Yanming Wang, a Penn State University associate professor of biochemistry and molecular biology, and Gong Chen, a Penn State assistant professor of chemistry, developed the new strategy after years of earlier research on a gene called PAD4 (peptidylarginine deiminase 4), which produces the PAD4 enzyme. Previous research by Wang and other scientists revealed that the PAD4 enzyme plays an important role in protecting the body from infection. The scientists compared normal mice with a functioning PAD4 gene to other mice that had a defective a PAD4 gene. When infected with bacteria, cells from the normal mice attacked and killed about 30 percent of the harmful bacteria, while cells from the defective mice battled a mere 10 percent. The researchers discovered that cells with a functioning PAD4 enzyme are able to build around themselves a protective, bacteria-killing web that Wang and his colleagues dubbed a NET (neutrophil extracellular trap). This NET is especially effective at fighting off flesh-eating bacteria.

Now, in their new study, Wang and his collaborators have focused on the less-desirable effects of the same PAD4 gene. While PAD4 is clearly a critical part of the body's defense strategy, the gene's over-expression may be linked to autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. One situation in which the PAD4 enzyme is markedly increased is in patients with certain cancers, such as breast, lung, and bone cancers. "We know that the PAD4 gene acts to silence tumor-suppressor genes," said Wang. "So we theorized that by inhibiting the enzyme that this gene produces, the 'good guys' -- the tumor-suppressor genes -- would do a better job at destroying cancerous tissue and allowing the body to heal."

To test their theory, Wang and his colleagues treated mice that had cancerous tumors with a molecule to inhibit the PAD4 enzyme. They found that, especially when combined with additional enzyme inhibitors, the treatment worked as effectively as the most-commonly-used chemotherapy drug, doxorubicin, which shrinks tumors by about 70 percent.

Most striking, however, was that the PAD4 enzyme-inhibition strategy caused significantly less damage to healthy tissues. "Current chemotherapy drugs such as doxorubicin don't attack just tumors; unfortunately, they also attack healthy areas of the body," Wang explained. "That's why chemotherapy patients experience such terrible side effects such as weight loss, nausea, and hair loss. Because the PAD4 treatment appears to be less toxic, it could be an excellent alternative to current chemotherapy treatments."

Wang also explained that the PAD4 gene's dual personality -- on the one hand a helpful defense against bacteria, while on the other, a harmful silencer of cancer-suppressor genes -- can be understood from the perspectives of evolution and longer life spans. "Our ancestors didn't have antibiotics, so a bacterial infection could easily result in death, especially in young children," Wang explained. "So, back then, an overactive PAD4 gene was advantageous because the NET bacteria-trapping mechanism was the body's major defense against infection." Wang also explained that on the other hand, because people today have access to antibiotics, we live much longer than our ancestors did. "PAD4's bad effects -- cancer and autoimmune diseases -- tend to be illnesses that appear later in life," Wang said. "So nowadays, an overactive PAD4 gene, while still protective against bacteria, can be detrimental later in life."

This research was funded by the National Cancer Institute of the National Institutes of Health and a Penn State Clinical and Translational Science Institute Pilot Grant Award to Wang and Chen. In addition to Wang and Chen, other researchers who contributed to this project include Yuji Wang, Pingxin Li, Shu Wang, Jing Hu, Megan Fisher, Kira Oshaben, Jianhui Wu, Na Zhao, and Ying Gu of Penn State's Center for Eukaryotic Gene Regulation and the Department of Biochemistry and Molecular Biology.

[ Katrina Voss ]

CONTACTS
Yanming Wang: 814-865-3775 (after 7 June 2012), 8610-8257-6051 (China, before 7 June 2012), yuw12@psu.edu
Gong Chen: (+1) 814-867-2590, guc11@psu.edu
Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

Barbara Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>