Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Straighten Up and Fly Right: Moths Benefit More from Flexible Wings than Rigid

01.07.2009
New research using high-speed digital imaging shows that, at least for some insects, wings that flex and deform, something like what happens to a heavy beach towel when you snap it to get rid of the sand, are the best for staying aloft.

Most scientists who create models trying to understand the mechanics and aerodynamics of insect flight have assumed that insect wings are relatively rigid as they flap.

New University of Washington research using high-speed digital imaging shows that, at least for some insects, wings that flex and deform, something like what happens to a heavy beach towel when you snap it to get rid of the sand, are the best for staying aloft.

"The evidence indicates that flexible wings are producing profoundly different air flows than stiff wings, and those flows appear to be more beneficial for generating lift," said Andrew Mountcastle, a UW doctoral student in biology.

He used particle image velocimetry, a technique commonly used to determine flow velocities in fluids, to study how air flows over the wings of Manduca sexta, or tobacco hawkmoths. The method combined laser light and high-speed digital video to model air flow.

A hawkmoth's wings are controlled by muscles on the insect's body and have no internal muscles of their own. The bulk of the wing is something like fabric stretched back from a stiff leading edge, fabric that is elastic and bends from inertia as the wing accelerates or decelerates through each stroke.

To test the wings' function, they were attached to mechanical "flappers" that moved back and forth 25 times a second, the same frequency at which the moths flap their wings, with the focus on how the wings deformed with each motion reversal. While the machine placed the wings at the same dominant angle as in normal moth flight, it could only approximate natural motion in one axis of rotation, compared with the three axes controlled in actual moth flight.

For the research, wings were removed from moths and tested in the mechanical "flapper" immediately, while they maintained most of their natural elasticity. After that the wings were allowed to dry for 12 to 24 hours and covered with enough spray paint to restore their original mass, then the wings were tested again in their more rigid state. The high-speed video, when viewed in slow motion, provided graphic detail of how the wings deformed as they flapped.

"That gave us two profoundly different deformations when we flapped the wings at natural wing-beat frequencies," Mountcastle said.

The "fresh," or flexible, wings had a mean deformation of 1.6 millimeters (about 64-thousandths of an inch) for each of five motion reversals, while the dry, stiff wings had a mean deformation of 1.15 millimeters (about 46-thousandths of an inch). By comparison, a freely hovering moth had a mean deformation of 1.52 millimeters (about 61-thousandths of an inch).

"Our results show that the flexible wings are doing a better job of generating lift-favorable momentum than are the stiff wings. They also are inducing airflow with greater overall velocity, which suggests the production of greater force for flight," Mountcastle said.

He is the lead author of a paper on the work, published in May in the journal Experiments in Fluids. Co-author is Thomas Daniel, a UW biology professor. The work was funded by the Defense Advanced Research Projects Agency, the National Science Foundation and the Joan and Richard Komen Endowed Chair.

"As a biologist, I am interested in the evolutionary implications of what we see here. To understand the selective pressures that have acted on wings through their evolution, we have to understand the functional implication of wing forms and their material properties," Mountcastle said.

He noted that insect wings have a wide variety of shapes and functions, and trying to understand how such diversity came about "is a really interesting biological question."

"There also is interest in developing tiny insect-like flapping robots, and certainly these results are relevant to that field," he said.

For more information, contact Mountcastle at 206-543-7335 or mtcastle@u.washington.edu

A high-resolution image and a video of hawkmoth research are available through this release at uwnews.washington.edu. Videos of research involving other insects can be viewed at http://students.washington.edu/mtcastle/movies.php.

Vince Stricherz | Newswise Science News
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>