Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers scientists successfully expand bone marrow-derived stem cells in culture

15.09.2011
All stem cells—regardless of their source—share the remarkable capability to replenish themselves by undergoing self-renewal. Yet, so far, efforts to grow and expand scarce hematopoietic (or blood-forming) stem cells in culture for therapeutic applications have been met with limited success.

Now, researchers at the Stowers Institute for Medical Research teased apart the molecular mechanisms enabling stem cell renewal in hematopoietic stem cells isolated from mice and successfully applied their insight to expand cultured hematopoietic stem cells a hundredfold.

Their findings, which will be published in the Sept. 15, 2011, edition of Genes & Development, demonstrate that self-renewal requires three complementary events: proliferation, active suppression of differentiation and programmed cell death during proliferation.

"The previous efforts so far to grow and expand scarce hematopoietic stem cells in culture for therapeutic applications have been met with limited success", says Stowers investigator Linheng Li, Ph.D., who led the study. "Being able to tap into stem cell's inherent potential for self-renewal could turn limited sources of hematopoietic stem cells such as umbilical cord blood into more widely available resources for hematopoietic stem cells," he adds while cautioning that their findings have yet to be replicated in human cells.

The transplantation of human hematopoietic stem cells isolated from bone marrow is used in the treatment of anemia, immune deficiencies and other diseases, including cancer. However, since bone marrow transplants require a suitable donor-recipient tissue match, the number of potential donors is limited.

Hematopoietic stem cells isolated from umbilical cord blood could be a good alternative source: Readily available and immunologically immature, they allow the donor-recipient match to be less than perfect without the risk of immune rejection of the transplant. Unfortunately, their therapeutic use is limited since umbilical cord blood contains only a small number of stem cells.

Although self-renewal is typically considered a single trait of stem cells, Li and his team wondered whether it could be pulled apart into three distinct requirements: proliferation, maintenance of the undifferentiated state, and the suppression of programmed cell death or apoptosis. "The default state of stem cells is to differentiate into a specialized cell types," explains postdoctoral researcher and first author John Perry, Ph.D. "Differentiation must be blocked in order for stem cells to undergo self-renewal."

Proliferation of stem cells in an undifferentiated state, however, calls tumor suppressor genes into action. These genes help prevent cancer by inducing a process of cell death known as apoptosis. "Consequently, self-renewal of adult stem cells must also include a third event, the active suppression of apoptosis," says Perry.

To test their hypothesis, Perry and his colleagues isolated hematopoietic stem cells from mice and analyzed two key genetic pathways—the Wnt/â-catenin and PI3K/Akt pathways. Wnt proteins had been identified as "self-renewal factors," while PI3K/Akt activation had been shown to induce proliferation and promote survival by inhibiting apoptosis.

Surprisingly, activation of the Wnt/â-catenin pathway alone blocked differentiation but eventually resulted in cell death, while activation of the PI3K/Akt pathway alone increased differentiation but facilitated cell survival. Only when both pathways were activated, did the pool of hematopoietic stem cells start expanding. "This demonstrated both pathways had to cooperate to promote self-renewal," says Perry.

Although altering both pathways drives self-renewal of hematopoietic stem cells, it also permanently blocks their ability to mature into fully functional blood cells. To sidestep the differentiation block and generate normal, functioning hematopoietic stem cells usable for therapy, the Stowers scientists used small molecules to reversibly activate both the Wnt/â-catenin and PI3K/Akt pathways in culture.

"We were able to expand the most primitive hematopoietic stem cells, which, when transplanted back into mice gave rise to all blood cell types throughout three, sequential transplantation experiments," says Li. "If similar results can be achieved using human hematopoietic stem cells from sources such as umbilical cord blood, this work is expected to have substantial clinical impact."

Researchers who also contributed to the work include Xi C. He, Ryohichi Sugimura, Justin C. Grindley and Jeffrey S. Haug at the Stowers Institute for Medical Research and Sheng Ding in the Gladstone Institute of Cardiovascular Disease at the University of California, San Francisco.

The work was funded in part by the Stowers Institute for Medical Research and the Leukemia & Lymphoma Society.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife Virginia opened the Institute in 2000. Since then, the Institute has spent over 800 million dollars in pursuit of its mission. Currently the Institute is home to nearly 500 researchers and support personnel; over 20 independent research programs; and more than a dozen technology development and core facilities. Learn more about the Institute at www.stowers.org.

Gina Kirchweger | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>