Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers Researchers Develop Whole Genome Sequencing Approach for Mutation Discovery

08.05.2009
The Stowers Institute’s Hawley Lab and Molecular Biology Facility have developed a “whole-genome sequencing approach” to mapping mutations in fruit flies. The novel methodology promises to reduce the time and effort required to identify mutations of biological interest. The work was published in the May issue of the journal GENETICS.

The team mapped a fruit-fly mutation caused by the compound ethyl methanesulfonate (EMS) by determining the DNA sequence of the mutant fly’s genome. The results provide insight into the mechanism of EMS mutageneseis and into gene conversion events involving balancer chromosomes — genetic tools used to prevent genetic recombination between homologous chromosomes during meiosis.

Model organisms like fruit flies are used in research for studying both normal biological processes and human disease. Fruit fly genes can be inserted, deleted or modified, and large numbers of flies can be randomly mutated to generate interesting phenotypes relevant to human disease. Finding the mutated gene responsible for an interesting phenotype is labor intensive and time consuming, and many mutations that cause medically relevant phenotypes are not discovered. The new approach lowers the barrier to finding mutations and greatly accelerates the discovery of genes important for human health.

“This approach will change the way fruit fly genetics is done,” said Scott Hawley, Ph.D., Investigator and co-equal senior author on the publication. “Traditional mapping approaches to identify mutations are inefficient procedures. Our whole-genome sequencing approach is fast and cost effective. Among other potential uses, it also carries the potential to pinpoint inheritable molecular characteristics that are controlled by several genes at once.”

“The traditional mapping method could take months to years depending on the complexity of the phenotype,” said Karen Staehling-Hampton, Ph.D., Managing Director of Molecular Biology and co-equal senior author on the paper. “This advance will allow us to map mutations of interest in just a few weeks. The next-generation sequencing technology used for this project is extremely exciting. It will allow researchers to sequence genomes for a few thousand dollars, a cost unheard of just a few years ago. It will also enable them to take their science in new directions and answer new questions that were not possible with traditional sequencing technology.”

Additional contributing authors from the Stowers Institute include first author Justin Blumenstiel, Ph.D., formerly a Postdoctoral Research Fellow; Aaron Noll, Bioinformatics Programmer Analyst III; Jennifer Griffiths, Research Technician III; Anoja Perera, Laboratory Manager II; Kendra Walton, Research Technician III; and William Gilliland, Ph.D., Senior Research Associate.

Dr. Hawley is an American Cancer Society Research Professor. In addition to his research at the Stowers Institute, Dr. Hawley serves as a Professor of Molecular and Integrative Physiology at The University of Kansas Medical Center; an Adjunct Professor of Biological Sciences at the University of Missouri-Kansas City; and an Adjunct Professor of Biology at The University of Kansas. Learn more about his work at www.stowers-institute.org/labs/HawleyLab.asp. Learn more about the work of the Molecular Biology support facility at www.stowers.org/Public/CoreFacilities.asp

About the Stowers Institute for Medical Research
Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing, treating, and curing disease. Jim and Virginia Stowers endowed the Institute with gifts totaling $2 billion. The endowment resides in a large cash reserve and in substantial ownership of American Century Investments, a privately held mutual fund company that represents exceptional value for the Institute’s future.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>