Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stowers Researchers Develop Whole Genome Sequencing Approach for Mutation Discovery

08.05.2009
The Stowers Institute’s Hawley Lab and Molecular Biology Facility have developed a “whole-genome sequencing approach” to mapping mutations in fruit flies. The novel methodology promises to reduce the time and effort required to identify mutations of biological interest. The work was published in the May issue of the journal GENETICS.

The team mapped a fruit-fly mutation caused by the compound ethyl methanesulfonate (EMS) by determining the DNA sequence of the mutant fly’s genome. The results provide insight into the mechanism of EMS mutageneseis and into gene conversion events involving balancer chromosomes — genetic tools used to prevent genetic recombination between homologous chromosomes during meiosis.

Model organisms like fruit flies are used in research for studying both normal biological processes and human disease. Fruit fly genes can be inserted, deleted or modified, and large numbers of flies can be randomly mutated to generate interesting phenotypes relevant to human disease. Finding the mutated gene responsible for an interesting phenotype is labor intensive and time consuming, and many mutations that cause medically relevant phenotypes are not discovered. The new approach lowers the barrier to finding mutations and greatly accelerates the discovery of genes important for human health.

“This approach will change the way fruit fly genetics is done,” said Scott Hawley, Ph.D., Investigator and co-equal senior author on the publication. “Traditional mapping approaches to identify mutations are inefficient procedures. Our whole-genome sequencing approach is fast and cost effective. Among other potential uses, it also carries the potential to pinpoint inheritable molecular characteristics that are controlled by several genes at once.”

“The traditional mapping method could take months to years depending on the complexity of the phenotype,” said Karen Staehling-Hampton, Ph.D., Managing Director of Molecular Biology and co-equal senior author on the paper. “This advance will allow us to map mutations of interest in just a few weeks. The next-generation sequencing technology used for this project is extremely exciting. It will allow researchers to sequence genomes for a few thousand dollars, a cost unheard of just a few years ago. It will also enable them to take their science in new directions and answer new questions that were not possible with traditional sequencing technology.”

Additional contributing authors from the Stowers Institute include first author Justin Blumenstiel, Ph.D., formerly a Postdoctoral Research Fellow; Aaron Noll, Bioinformatics Programmer Analyst III; Jennifer Griffiths, Research Technician III; Anoja Perera, Laboratory Manager II; Kendra Walton, Research Technician III; and William Gilliland, Ph.D., Senior Research Associate.

Dr. Hawley is an American Cancer Society Research Professor. In addition to his research at the Stowers Institute, Dr. Hawley serves as a Professor of Molecular and Integrative Physiology at The University of Kansas Medical Center; an Adjunct Professor of Biological Sciences at the University of Missouri-Kansas City; and an Adjunct Professor of Biology at The University of Kansas. Learn more about his work at www.stowers-institute.org/labs/HawleyLab.asp. Learn more about the work of the Molecular Biology support facility at www.stowers.org/Public/CoreFacilities.asp

About the Stowers Institute for Medical Research
Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing, treating, and curing disease. Jim and Virginia Stowers endowed the Institute with gifts totaling $2 billion. The endowment resides in a large cash reserve and in substantial ownership of American Century Investments, a privately held mutual fund company that represents exceptional value for the Institute’s future.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>