Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopping fatty change in heart cells

04.06.2009
One molecule is all it takes to set a fatal chain of events in motion that can end up leading to heart failure. Cell biologists at ETH Zurich have discovered why oxygen deficiency causes the myocardial muscle to extract energy from sugar and store fat in the cells.

Heart failure is one of the world's most frequent causes of death - caused by conditions such as diabetes and obesity. With people who are overweight, the heart has to do more work in order to pump the blood through the circulatory system and this causes an increase in blood pressure.

The heart itself becomes enlarged as the myocardial muscle cells increase in mass. To enable the heart to grow there also has to be an increased supply of energy and oxygen. However, the myocardial muscle cells suffer from a lack of oxygen and energy until such time as there are enough blood vessels to support the tissue.

This is the critical moment in which the cells convert their metabolism. A healthy heart burns fat. But the abnormally enlarged heart cells burn sugar in the form of glucose because this form of energy is quickly available. The protein HIF1-alpha is responsible for this conversion to sugar combustion. This has been demonstrated in research work done by Jaya Krishnan from the group of Wilhelm Krek, Professor of Cell Biology at ETH Zurich. His research has just been published in the online journal "Cell Metabolism".

Cells undergo fatty change and die off

However, HIF1-alpha does not merely result in modified metabolism, it also activates other genes. One of the genes regulated by HIF1-alpha is known as PPARgamma. It causes the cardiac cells to produce and store fat. This results in the cells becoming fatty and dying off. Myocardial contraction is disrupted and this can lead to fatal heart failure. With HIF1-alpha, the researchers have identified a protein which has an effect that is not only of significance in connection with heart failure. This protein is in fact the most important catalyst that causes cells to convert glucose into fat.

Healthy heart despite high blood pressure

The researchers working around Krek have discovered an amazing fact - mice lacking the corresponding gene, and by which HIF1-alpha is therefore ineffetive, do not suffer from heart disease. And this does not change even if the mice have high blood pressure. Their hearts also do not enlarge under such conditions of pathologic stress unlike the hearts of normal mice. They burn fat instead of sugar and function like healthy hearts.

At the same time, the research team has been able to provide an explanation for a phenomenon that is especially important to diabetics: some diabetics are given PPARgamma-promoting medicine to help muscles and other organs better respond to insulin. Clinical studies have shown that these patients have a higher risk of dying from heart failure. This research by Krishnan and Krek has shown why these drugs may be risky.

Dream pill in the distant future

In order to combat heart failure, a substance has to be found that binds itself to the protein HIF1-alpha in order to block it. It might be hard to locate a satisfactory antagonist to HIF1-alpha because the protein has no enzymatic docking site. Nevertheless, research is under way to develop a suitable molecule although Professor Wilhelm Krek does not think this will be quickly achieved. He is, however, convinced that with an effective remedy, the burden associated with this disease of civilization can be reduced.

ETH Zurich
Prof. Wilhelm Krek
Institute of Cell Biology
Phone +41 44 633 34 47
wilhelm.krek@cell.biol.ethz.ch

Roman Klingler | idw
Further information:
http://www.ethz.ch

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>