Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stony Brook University Research Reveals Bats Evolved More Than One Way to Drink Nectar

21.08.2012
A team of evolutionary biologists compared the anatomy and genes of bats to help solve a persistent question in evolution

Why do analyses of different features of an organism result in conflicting patterns of evolutionary relationships? Their findings, “Understanding phylogenetic incongruence: lessons from phyllostomid bats,” appear in the August 14 edition of Biological Reviews.


Two nectar-feeding bats in the Neotropical family Phyllostomidae; the glossophagine Pallas's long-tongued bat, Glossophaga soricina, (left) and the lonchophylline orange nectar bat, Lonchophylla robusta, (right). In a new study Dávalos, Cirranello, et al., show that many anatomical features implying a common origin of nectar feeding for glossophagines and lonchophyllines — such as a long, extensible tongue — are related to their shared diet. Their evolutionary patterns are consistent with natural selection. (Photo credit: Felineora (left), Marco Tschapka (right).

To answer this question, Liliana Dávalos, PhD, Assistant Professor in the Department of Ecology and Evolution, and member of the Consortium for Inter-Disciplinary Environmental Research (CIDER) at Stony Brook University, and Andrea Cirranello of the Division of Vertebrate Zoology at the American Museum of Natural History (AMNH), together with colleagues at the AMNH and the New York College of Osteopathic Medicine, examined the skin, skeleton, muscle, tongue, internal organs and a few genes of a family of New World bats, applying statistical models to uncover the genetic and anatomical features that produced the conflicts between evolutionary patterns. This work was funded in part by the National Science Foundation.

Specifically, the team examined why genes suggested that nectar feeding had evolved twice in Leaf-Nosed bats, while the anatomical features strongly pointed to a single origin of nectar feeding in this group. Most bats feed on insects, but New World Leaf-Nosed bats are exceptionally diverse in that they feed on nectar, fruit, frogs, lizards and even blood.

One hypothesis that the team tested is that traits linked to how bats feed have been shaped by natural selection for a nectar-based diet, resulting in the conflicting pattern. As Dávalos and Cirranello explain, connecting the conflicting pattern to the diet requires showing that the evolutionary pattern resulting from anatomical traits is wrong, and that the traits producing the conflict with the genetic data are linked to a shared dietary specialization.

“If a diet specializing in nectar helped shape the anatomy of the two groups of bats, then the traits that support the groups coming together should be related to feeding, and taking those traits out should break up the spurious group of nectar-feeding bats,” the researchers said. They found support for these predictions by analyzing evolutionary trees from two genomic data sets, alongside trees based on more than 200 anatomical traits; and applying a battery of statistical approaches to identify where in the evolutionary tree the conflicts arose and what genetic regions and traits supported the differences.

The team traced the conflict in evolutionary patterns among nectar-feeding bats to traits linked to feeding, such as the shape and number of teeth, gaining a “paintbrush” type tongue tip, and rearranging the tongue muscles to accommodate longer, extensible tongues. All of these traits are thought to be associated with specialized nectar feeding. The grouping of all nectar-feeding bats broke down into smaller groups when those traits were taken out of the analyses. Overall, the team found that anatomical traits and the studied genes tended to agree on many parts of the evolutionary tree, but that the anatomical traits associated with nectar feeding brought nectar-feeding bats together.

Natural selection has shaped the anatomy of organisms, but when specializations evolved long ago, it can be difficult for evolutionary biologists to demonstrate that traits bear its signature. By ruling out other biological processes that produce conflict among evolutionary trees, and tracing the conflict to specific traits that are known to enable drinking nectar, the team was able to narrow the options and discover patterns consistent with the signature of adaptation to diet. “We found that anatomical traits associated with nectar feeding have evolved and been lost several times, so they tend to bring bats from different branches of the evolutionary tree together, in direct conflict with genetic trees,” Dávalos and Cirranello said.

Office of Media Relations | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>