Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stomach bacterium damages human DNA

06.09.2011
The stomach bacterium Helicobacter pylori is one of the biggest risk factors for the development of gastric cancer, the third most common cause of cancer-related deaths in the world.

Molecular biologists from the University of Zurich have now identified a mechanism of Helicobacter pylori that damages the DNA of cells in the gastric mucosa and sets them up for malignant transformation.

Gastric cancer is one of the most common and often fatal cancers: Every third cancer death is due to gastric carcinoma. The main risk factor for the development of gastric cancer is the chronic infection of the gastric mucosa with the bacterium Helicobacter pylori. Since this bacterium was discovered in 1983, scientists have been puzzling over the molecular mechanisms triggering carcinogenesis. Now, several research teams headed by Prof. Anne Müller and Prof. Massimo Lopes from the Institute of Molecular Cancer Research at the University of Zurich have demonstrated how Helicobacter pylori harms human and animal host cells in in vitro experiments. The study published in the science journal PNAS shows that infection of host cells leads to breaks in both strands of the DNA double helix.

Degree of damage depends on duration of infection

Müller, Lopes and their teams also show that the frequency of the double-strand breaks depends on the intensity and duration of the infection. The DNA breaks induced by H. pylori trigger the cell’s natural DNA damage signaling and repair mechanisms. If the bacterium is killed off with antibiotics within a few hours of infection, most of the breaks can be repaired successfully. Prolonged infections that imitate the conditions in the chronically infected host, however, exhaust the cell’s repair response and the dangerous double-strand breaks can no longer - or only imprecisely - be repaired, causing genetic mutations or the death of the cell. The new findings are in agreement with the previously described genomic instability of gastric cancer cells and will be important for a better understanding of the pathological mechanisms promoting gastric carcinogenesis.

The research was also funded with contributions from the Swiss National Science Foundation, the Schweizer Krebsliga (Swiss Cancer Society) and the Research Credit of the University of Zurich.

Further reading:

Isabella M. Toller, Kai Neelsen, Martin Steger, Mara L. Hartung, Michael O. Hottiger, Manuel Stucki, Behnam Kalali, Markus Gerhard, Alessandro A. Sartori, Massimo Lopes and Anne Müller: The Carcinogenic Bacterial Pathogen Helicobacter pylori Triggers DNA Double-Strand Breaks and a DNA Damage Response in its Host Cells", IN: PNAS Early Edition, doi: 10.1073/pnas.1100959108

Contacts:
Prof. Anne Müller
University of Zurich
Institute of Molecular Cancer Research
Tel. +41 44 635 34 74
Email: mueller@imcr.uzh.ch
Prof. Dr. Massimo Lopes
University of Zurich
Institute of Molecular Cancer Research
Tel. +41 44 635 34 67
Email: lopes@imcr.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>