Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stirred, Not Shaken

10.07.2013
Nanoscale magnetic stir bars

Anyone who has ever worked in a laboratory has seen them: magnetic stirrers that rotate magnetic stir bars in liquids to mix them. The stir bars come in many different forms—now including nanometer-sized.



In the journal Angewandte Chemie, researchers from Singapore have now introduced chains made of 40 nm iron oxide particles that act as the world’s smallest magnetic stir bars, effectively stirring picoliter-sized drops of emulsion with a commercial magnetic stirrer.

Effective stirring is essential in chemical and biological experiments. This is usually achieved with magnetic stirrers and stir bars. However, this does not work in the tiny channels and droplets used in lab-on-a-chip applications and for microliter-scale experiments in the biosciences.

Inexpensive stir bars that are small enough but still able to absorb external magnetic energy and efficiently translate it to stir tiny volumes are thus high on the wish list.

The problem lies in the tiny size of previous micrometer-sized stir bars: They are too big to remain suspended because they are pulled to the bottom of the vessel by both gravity and magnetic attraction. At the same time, they are too small to completely stir the solution when they are on the bottom, which works for macroscopic stir bars. The majority of the liquid remains unmixed.

A team led by Hongyu Chen at the Nanyang Technological University in Singapore has now found a solution to this problem: tiny silicon dioxide coated rods made of lined-up iron oxide nanoparticles.

They are even easy to make. Magnetic iron oxide particles with diameters of 40nm are stabilized with oleic acid, modified with citric acid to make them water-soluble, and dispersed in a water/propanol mixture. After addition of an organosilicon compound and ammonia, the reaction vessel is simply left to stand near a magnet overnight. The stir bars can then simply be collected by centrifugation.

The thickness of the silicon layer can be controlled, allowing for the production of stir bars with diameters ranging from 75 nm to 1.4 µm. Their length can reach up to 17 µm. The bars are thus so small that they remain suspended in solution. Addition of a large number of stir bars ensures that all of the liquid is stirred. In the magnetic field of a conventional magnetic stir plate, the individual stir bars move independently. It is thus possible to thoroughly mix droplets of just a few picoliters.

The nanoscale stir bars can be easily removed by adding the droplets on top of a strong magnet wrapped in a layer of plastic film. The magnetic field gradually pulls the stir bars to the bottom of the droplets, and the droplets can then simply be picked up with a pipette.

About the Author
Dr. Hongyu Chen is an Associate Professor in the Division of Chemistry and Biological Chemistry at Nanyang Technological University, Singapore. His main research interest is developing new methodologies for the synthesis of complex nanostructures, and the underlying mechanisms.

Author: Hongyu Chen, Nanyang Technological University, Singapore (Singapore), http://www.ntu.edu.sg/home/hongyuchen/

Title: Stirring in Suspension: Nanometer-Sized Magnetic Stir Bars

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.20130324

Hongyu Chen | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>