Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stirred, Not Shaken

10.07.2013
Nanoscale magnetic stir bars

Anyone who has ever worked in a laboratory has seen them: magnetic stirrers that rotate magnetic stir bars in liquids to mix them. The stir bars come in many different forms—now including nanometer-sized.



In the journal Angewandte Chemie, researchers from Singapore have now introduced chains made of 40 nm iron oxide particles that act as the world’s smallest magnetic stir bars, effectively stirring picoliter-sized drops of emulsion with a commercial magnetic stirrer.

Effective stirring is essential in chemical and biological experiments. This is usually achieved with magnetic stirrers and stir bars. However, this does not work in the tiny channels and droplets used in lab-on-a-chip applications and for microliter-scale experiments in the biosciences.

Inexpensive stir bars that are small enough but still able to absorb external magnetic energy and efficiently translate it to stir tiny volumes are thus high on the wish list.

The problem lies in the tiny size of previous micrometer-sized stir bars: They are too big to remain suspended because they are pulled to the bottom of the vessel by both gravity and magnetic attraction. At the same time, they are too small to completely stir the solution when they are on the bottom, which works for macroscopic stir bars. The majority of the liquid remains unmixed.

A team led by Hongyu Chen at the Nanyang Technological University in Singapore has now found a solution to this problem: tiny silicon dioxide coated rods made of lined-up iron oxide nanoparticles.

They are even easy to make. Magnetic iron oxide particles with diameters of 40nm are stabilized with oleic acid, modified with citric acid to make them water-soluble, and dispersed in a water/propanol mixture. After addition of an organosilicon compound and ammonia, the reaction vessel is simply left to stand near a magnet overnight. The stir bars can then simply be collected by centrifugation.

The thickness of the silicon layer can be controlled, allowing for the production of stir bars with diameters ranging from 75 nm to 1.4 µm. Their length can reach up to 17 µm. The bars are thus so small that they remain suspended in solution. Addition of a large number of stir bars ensures that all of the liquid is stirred. In the magnetic field of a conventional magnetic stir plate, the individual stir bars move independently. It is thus possible to thoroughly mix droplets of just a few picoliters.

The nanoscale stir bars can be easily removed by adding the droplets on top of a strong magnet wrapped in a layer of plastic film. The magnetic field gradually pulls the stir bars to the bottom of the droplets, and the droplets can then simply be picked up with a pipette.

About the Author
Dr. Hongyu Chen is an Associate Professor in the Division of Chemistry and Biological Chemistry at Nanyang Technological University, Singapore. His main research interest is developing new methodologies for the synthesis of complex nanostructures, and the underlying mechanisms.

Author: Hongyu Chen, Nanyang Technological University, Singapore (Singapore), http://www.ntu.edu.sg/home/hongyuchen/

Title: Stirring in Suspension: Nanometer-Sized Magnetic Stir Bars

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.20130324

Hongyu Chen | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>