Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stirred from Within

31.10.2013
Micromotors mix for more effective oxidative degradation of chemical weapons

Rapidly and efficiently converting chemical weapons into nontoxic products in remote areas is one of the most difficult tasks in the disposal of weapons of mass destruction.

In the journal Angewandte Chemie, a team from the University of California, San Diego has now described how self-propelled micromotors can accelerate the oxidative neutralization of nerve agents by intensively mixing the remediation solution.

Environmentally friendly processes that use hydrogen peroxide and an activator (e.g. sodium bicarbonate) to degrade chemical weapons like sarin, VX, soman, and mustard gas have recently replaced earlier chlorine-based methods. However, they generally require high concentrations of peroxide, long reaction times, and intensive mechanical mixing—which can be extremely problematic in the elimination of stocks of chemical weapons in remote regions or enemy camps.

A team headed by Joseph Wang has now developed a novel strategy based on mixing of the remediation solution with self-propelled micromotors.

The motors are tiny conical tubes made from a bilayer with a polymer on the outside and platinum on the inside. In this process, hydrogen peroxide acts as both the oxidizing agent for the chemical weapons and fuel for the micromotors. As the hydrogen peroxide is catalytically decomposed on the inner platinum surface, oxygen bubbles are formed.

The bubbles exit the tubes at their rear (wider) end, pushing them through the liquid. The movement of the motors through the liquid combined with the gas bubbles provides for efficient mixing of the remediation solution. This significantly increases both the turnover and the speed of the decontamination reaction without requiring high concentrations of peroxide.

Wang’s team was able to demonstrate the efficiency of their new method by breaking down a variety of organophosphate pesticides with chemical structures similar to those of organophosphate nerve agents. In a demonstration reaction, 1.5 million micromotors in a volume of about 15 mL achieved mixing comparable to a magnetic stirrer at 200 revolutions per minute.

The concept of mixing through the movement of self-propelled micromotors is not limited to the neutralization of chemical weapons. It could also be used to accelerate chemical reactions in general. This could be useful in applications like microreactors, where mechanical mixing is often difficult.

About the Author
Joseph Wang is a Distinguished Professor in the Department of Nanoengineering at the University of California, San Diego (UCSD). His scientific interests are focused on the areas of nanomachines, bioelectrics, biosensors, bionanotechnology, and electroanalytical chemistry, for which he was awarded several prestigious prizes. Wang is the Editor-in-Chief of Electroanalysis (Wiley-VCH).
Author: Joseph Wang, University of California San Diego (USA), http://ne.ucsd.edu/~joewang/
Title: Micromotor-Based High-Yielding Fast Oxidative Detoxification of Chemical Threats

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201308072

Joseph Wang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>