Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steroids control gas exchange in plants

06.02.2012
Plants leaves are sealed with a gas-tight wax layer to prevent water loss.

Plants breathe through microscopic pores called stomata (Greek for mouths) on the surfaces of leaves. Over 40% of the carbon dioxide, CO2, in the atmosphere passes through stomata each year, as well a water volume twice that of the whole atmosphere. As the key conduits for CO2 uptake and water evaporation, stomata are critical for both our climate and plant productivity. Thus, not surprisingly, the total number and distribution of stomata are strictly regulated by plants to optimize photosynthesis while minimizing water loss.

The mechanisms for such regulation have remained elusive. New research from Carnegie's Zhiyong Wang, Tae-Wuk Kim and Dominique Bergmann demonstrates that certain plant steroid hormones, called brassinosteroids, play a crucial role in this regulating the number of stomata in the leaf. Their work is published online February 5 by Nature.

Brassinosteroids are found throughout the plant kingdom and regulate many aspects of growth and development, including inhibition of photosynthetic genes when there is insufficient light for photosynthesis. Mutant plants that are deficient in brassinosteroids show defects at many phases of the plant life cycle including reduced seed germination, activation of light-induced genes and growth behavior in the dark, dwarfism, and sterility.

Wang, lead author Kim and their colleagues Marta Michniewicz and Bergmann set out to determine brassinosteroid's role in stomatal development. They found that mutant plants that are brassinosteroid deficient, or lack sensitivity to brassinosteroids, were observed to have excessive and unevenly-distributed stomata, leading the team to ask what role this class of hormones plays in the developmental process for these crucial plant organs.

Wang and his colleagues had previously determined that when brassinosteroid binds to a receptor on the surface of a plant cell, it initiates a chain of signal transduction that results in certain genes being turned on or off within the cell's nucleus. But this research showed that one of the proteins involved in this chain, called BIN2, is also involved in a completely separate pathway that regulates the development of stomata.

The team found that BIN2--which is similar to a protein found in humans--had an inhibiting effect on a key protein in the stomatal-development regulatory system. This second protein is called called YODA and it also has a similar counterpart in humans. In the absence of brassinosteroid, BIN2 inhibits YODA, which allows stomata formation. When brassinosteroid is present, it causes inactivation of BIN2, and this allows YODA to inhibit stomatal development.

"This research supports the role of brassinosteroid as a master regulator that coordinates both physiological and development aspects of plant growth," Wang said. "Because brassinosteroid is one of the best-understood chemical pathways in plant physiology, these results could help scientists who are researching many other plant cell systems as well."

This research was supported by the National Institutes of Health, the Department of Energy, and the Herman Frasch Foundation. Dominique Bergmann is an investigator of the Howard Hughes Medical Institute and an adjunct member of the Carnegie Institution for Science's Department of Plant Biology.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Zhiyong Wang | EurekAlert!
Further information:
http://carnegiescience.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>