Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steroids control gas exchange in plants

06.02.2012
Plants leaves are sealed with a gas-tight wax layer to prevent water loss.

Plants breathe through microscopic pores called stomata (Greek for mouths) on the surfaces of leaves. Over 40% of the carbon dioxide, CO2, in the atmosphere passes through stomata each year, as well a water volume twice that of the whole atmosphere. As the key conduits for CO2 uptake and water evaporation, stomata are critical for both our climate and plant productivity. Thus, not surprisingly, the total number and distribution of stomata are strictly regulated by plants to optimize photosynthesis while minimizing water loss.

The mechanisms for such regulation have remained elusive. New research from Carnegie's Zhiyong Wang, Tae-Wuk Kim and Dominique Bergmann demonstrates that certain plant steroid hormones, called brassinosteroids, play a crucial role in this regulating the number of stomata in the leaf. Their work is published online February 5 by Nature.

Brassinosteroids are found throughout the plant kingdom and regulate many aspects of growth and development, including inhibition of photosynthetic genes when there is insufficient light for photosynthesis. Mutant plants that are deficient in brassinosteroids show defects at many phases of the plant life cycle including reduced seed germination, activation of light-induced genes and growth behavior in the dark, dwarfism, and sterility.

Wang, lead author Kim and their colleagues Marta Michniewicz and Bergmann set out to determine brassinosteroid's role in stomatal development. They found that mutant plants that are brassinosteroid deficient, or lack sensitivity to brassinosteroids, were observed to have excessive and unevenly-distributed stomata, leading the team to ask what role this class of hormones plays in the developmental process for these crucial plant organs.

Wang and his colleagues had previously determined that when brassinosteroid binds to a receptor on the surface of a plant cell, it initiates a chain of signal transduction that results in certain genes being turned on or off within the cell's nucleus. But this research showed that one of the proteins involved in this chain, called BIN2, is also involved in a completely separate pathway that regulates the development of stomata.

The team found that BIN2--which is similar to a protein found in humans--had an inhibiting effect on a key protein in the stomatal-development regulatory system. This second protein is called called YODA and it also has a similar counterpart in humans. In the absence of brassinosteroid, BIN2 inhibits YODA, which allows stomata formation. When brassinosteroid is present, it causes inactivation of BIN2, and this allows YODA to inhibit stomatal development.

"This research supports the role of brassinosteroid as a master regulator that coordinates both physiological and development aspects of plant growth," Wang said. "Because brassinosteroid is one of the best-understood chemical pathways in plant physiology, these results could help scientists who are researching many other plant cell systems as well."

This research was supported by the National Institutes of Health, the Department of Energy, and the Herman Frasch Foundation. Dominique Bergmann is an investigator of the Howard Hughes Medical Institute and an adjunct member of the Carnegie Institution for Science's Department of Plant Biology.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Zhiyong Wang | EurekAlert!
Further information:
http://carnegiescience.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>