Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steroid hormone receptor prefers working alone to shut off immune system genes

10.12.2012
Researchers at Emory University School of Medicine have obtained a detailed molecular picture that shows how glucocorticoid hormones shut off key immune system genes.

The finding could help guide drug discovery efforts aimed at finding new anti-inflammatory drugs with fewer side effects.

The results are scheduled for publication Sunday, Dec. 9 by the journal Nature Structural & Molecular Biology.

Synthetic glucocorticoid hormones – for example, prednisone and dexamethasone -- are widely used to treat conditions such as allergies, asthma, autoimmune diseases and cancer. They mimic the action of the natural hormone cortisol, which is involved in the response to stress and in regulating metabolism and the immune system. For this reason, synthetic glucocorticoids have a variety of severe side effects such as increased blood sugar and reduced bone density.

Both cortisol and synthetic hormones act by binding the glucocorticoid receptor, a protein that binds DNA and turns some genes on and others off. The hormone is required for the glucocorticoid receptor (GR) to enter the nucleus, giving it access to DNA.

For GR-targeting therapeutics, the desired anti-inflammatory effects are thought to come mainly from turning off inflammatory and immune system genes, while the side effects result from turning on genes involved in processes such as metabolism and bone growth.

The mechanism driving GR anti-inflammatory action has been debated, since was no GR binding site identified near these anti-inflammatory genes. Thus, GRs immunosupression was thought to occur indirectly, whereby GR blocks the ability of other critical DNA-binding proteins to stimulate gene expression. Last year French scientists discovered that the GR turns some immune system genes off directly by recognizing a distinct DNA sequence used only in gene repression. http://www.ncbi.nlm.nih.gov/pubmed/21496643

Eric Ortlund, PhD, Emory assistant professor of biochemistry, and first author William Hudson, a Molecular and Systems Pharmacology graduate student, used X-rays to probe crystals of GR bound to a stretch of DNA where it acts "repressively" to shut down the transcription of immune genes.

When the GR turns genes on, two GR molecules grasp each other while binding to DNA. However, the mode of binding to DNA at repressive sequences had remained unknown. Their analysis demonstrated that GR binds to repressive sites in pairs, but with two monomeric GR molecules located on opposite sides of the DNA helix.

"This unexpected geometry was still a surprise because GR has never been crystallized as a monomer bound to DNA, though previous studies proposed that GR monomers repress genes as opposed to GR dimers, which activate genes," says Ortlund.

In addition, the two GR molecules bind to different DNA sequences within the repressive DNA element, Hudson and Ortlund found. They also analyzed how mutations affected the ability of GR to bind repressive sites, showing that binding of the first GR molecule inhibits the binding of a second GR molecule. This "negative cooperativity" may play a role in ensuring that only GR monomers bind to DNA.

The study suggests that a drug preventing GR from interacting with other GR molecules while still allowing them to bind DNA and turn genes off may have anti-inflammatory effects with fewer side effects. One such plant-based compound, "compound A," has been under investigation by several laboratories.

"Our structural data could help scientists design synthetic hormones that separate these two aspects of GR function, potentially leading to improved steroid hormones for diseases ranging from asthma to autoimmune disorders," says Ortlund.

Grants: startup funds, National Institute of General Medical Sciences 5T32GM008602.

W.H. Hudson, C. Youn and E.A. Ortlund. The structural basis of direct glucocorticoid-mediated transrepression. Nat. Struct. Mol. Biol (2012).

Writer: Quinn Eastman

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>