Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steroid hormone receptor prefers working alone to shut off immune system genes

10.12.2012
Researchers at Emory University School of Medicine have obtained a detailed molecular picture that shows how glucocorticoid hormones shut off key immune system genes.

The finding could help guide drug discovery efforts aimed at finding new anti-inflammatory drugs with fewer side effects.

The results are scheduled for publication Sunday, Dec. 9 by the journal Nature Structural & Molecular Biology.

Synthetic glucocorticoid hormones – for example, prednisone and dexamethasone -- are widely used to treat conditions such as allergies, asthma, autoimmune diseases and cancer. They mimic the action of the natural hormone cortisol, which is involved in the response to stress and in regulating metabolism and the immune system. For this reason, synthetic glucocorticoids have a variety of severe side effects such as increased blood sugar and reduced bone density.

Both cortisol and synthetic hormones act by binding the glucocorticoid receptor, a protein that binds DNA and turns some genes on and others off. The hormone is required for the glucocorticoid receptor (GR) to enter the nucleus, giving it access to DNA.

For GR-targeting therapeutics, the desired anti-inflammatory effects are thought to come mainly from turning off inflammatory and immune system genes, while the side effects result from turning on genes involved in processes such as metabolism and bone growth.

The mechanism driving GR anti-inflammatory action has been debated, since was no GR binding site identified near these anti-inflammatory genes. Thus, GRs immunosupression was thought to occur indirectly, whereby GR blocks the ability of other critical DNA-binding proteins to stimulate gene expression. Last year French scientists discovered that the GR turns some immune system genes off directly by recognizing a distinct DNA sequence used only in gene repression. http://www.ncbi.nlm.nih.gov/pubmed/21496643

Eric Ortlund, PhD, Emory assistant professor of biochemistry, and first author William Hudson, a Molecular and Systems Pharmacology graduate student, used X-rays to probe crystals of GR bound to a stretch of DNA where it acts "repressively" to shut down the transcription of immune genes.

When the GR turns genes on, two GR molecules grasp each other while binding to DNA. However, the mode of binding to DNA at repressive sequences had remained unknown. Their analysis demonstrated that GR binds to repressive sites in pairs, but with two monomeric GR molecules located on opposite sides of the DNA helix.

"This unexpected geometry was still a surprise because GR has never been crystallized as a monomer bound to DNA, though previous studies proposed that GR monomers repress genes as opposed to GR dimers, which activate genes," says Ortlund.

In addition, the two GR molecules bind to different DNA sequences within the repressive DNA element, Hudson and Ortlund found. They also analyzed how mutations affected the ability of GR to bind repressive sites, showing that binding of the first GR molecule inhibits the binding of a second GR molecule. This "negative cooperativity" may play a role in ensuring that only GR monomers bind to DNA.

The study suggests that a drug preventing GR from interacting with other GR molecules while still allowing them to bind DNA and turn genes off may have anti-inflammatory effects with fewer side effects. One such plant-based compound, "compound A," has been under investigation by several laboratories.

"Our structural data could help scientists design synthetic hormones that separate these two aspects of GR function, potentially leading to improved steroid hormones for diseases ranging from asthma to autoimmune disorders," says Ortlund.

Grants: startup funds, National Institute of General Medical Sciences 5T32GM008602.

W.H. Hudson, C. Youn and E.A. Ortlund. The structural basis of direct glucocorticoid-mediated transrepression. Nat. Struct. Mol. Biol (2012).

Writer: Quinn Eastman

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>