Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are sterile mosquitoes the answer to malaria elimination?

18.11.2009
The Sterile Insect Technique (SIT), the release of sexually sterile male insects to wipe out a pest population, is one suggested solution to the problem of malaria in Africa. A new supplement, published in BioMed Central's open access Malaria Journal, reviews the history of the technique, and features details about aspects of its application in the elimination of malaria.

The supplement, edited by Dr Mark Benedict, who along with the other editors led the development of this technology at the International Atomic Energy Agency in Vienna, describes how SIT may be used against the vectors for malaria in sub-Saharan Africa, Anopheles mosquitoes. He said, "In the context of elimination, SIT could play a unique role.

As part of an area-wide integrated pest management programme, the SIT may be able to minimize problems due to insecticide resistance to antimalarial drugs. Because it is uniquely effective at low mosquito densities, SIT might be just the thing to deliver the final blow to mosquito populations and to completely remove malaria from a given area".

SIT involves the generation of 'sterile' male mosquitoes, which are incapable of producing offspring despite being sexually active. Because female mosquitoes only mate once during their lifetimes, a single mating with a sterile male can ensure that she will never breed. This leads to an increasing reduction in the population over time, in contrast to insecticides, which kill a certain fraction of the insect population. The supplement features articles reviewing the history of the technique; ethical, legal and social concerns that might arise from it; and detailed reviews of all of the elements required for a successful SIT programme.

Speaking about this new, freely available resource, Benedict said, "The SIT has proven highly effective over large areas when used against other insects. We produced this supplement because we believe that the technique has been overlooked as an anti-mosquito method. Its efficiency in low vector-population settings precisely complements insecticide-treated bednets, indoor residual spraying and larval control: when they are at their weakest, SIT is at its strongest. This supplement gives researchers and public health authorities information about the state-of-the-art as well as identifying specific challenges and requirements for successful implementation."

1. Development of the sterile insect technique for African malaria vectors
Edited by Mark Q Benedict, Alan S Robinson and Bart GJ Knols
Malaria Journal 2009, 8(Suppl 2):I1 (16 November 2009)
2. Malaria Journal is an Open Access, peer-reviewed, online journal monitored by Thomson Reuters (ISI), MEDLINE and PubMed. All articles are published without barriers to access, immediately upon acceptance.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com
http://www.malariajournal.com/supplements/8/S2

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>