Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-Step Chemical Process Turns Raw Biomass Into Biofuel

12.02.2009
Taking a chemical approach, researchers at the University of Wisconsin-Madison have developed a two-step method to convert the cellulose in raw biomass into a promising biofuel.

The process, which is described in the Wednesday, Feb. 11 issue of the Journal of the American Chemical Society, is unprecedented in its use of untreated, inedible biomass as the starting material.

The key to the new process is the first step, in which cellulose is converted into the “platform” chemical 5-hydroxymethylfurfural (HMF), from which a variety of valuable commodity chemicals can be made. “Other groups have demonstrated some of the individual steps involved in converting biomass to HMF, starting with glucose or fructose,” says Ronald Raines, a professor with appointments in the Department of Biochemistry and the Department of Chemistry. “What we did was show how to do the whole process in one step, starting with biomass itself.”

Raines and graduate student Joseph Binder, a doctoral candidate in the chemistry department, developed a unique solvent system that makes this conversion possible. The special mix of solvents and additives, for which a patent is pending, has an extraordinary capacity to dissolve cellulose, the long chains of energy-rich sugar molecules found in plant material. Because cellulose is one of the most abundant organic substances on the planet, it is widely seen as a promising alternative to fossil fuels.

“This solvent system can dissolve cotton balls, which are pure cellulose,” says Raines. “And it’s a simple system—not corrosive, dangerous, expensive or stinky.”

This approach simultaneously bypasses another vexing problem: lignin, the glue that holds plant cell walls together. Often described as intractable, lignin molecules act like a cage protecting the cellulose they surround. However, Raines and Binder used chemicals small enough to slip between the lignin molecules, where they work to dissolve the cellulose, cleave it into its component pieces and then convert those pieces into HMF.

In step two, Raines and Binder subsequently converted HMF into the promising biofuel 2,5-dimethylfuran (DMF). Taken together, the overall yield for this two-step biomass-to-biofuel process was 9 percent, meaning that 9 percent of the cellulose in their corn stover samples was ultimately converted into biofuel.

“The yield of DMF isn’t fabulous yet, but that second step hasn’t been optimized,” says Raines, who is excited about DMF’s prospects as a biofuel. DMF, he notes, has the same energy content as gasoline, doesn’t mix with water and is compatible with the existing liquid transportation fuel infrastructure. It has already been used as a gasoline additive.

In addition to corn stover, Raines and Binder have tested their method using pine sawdust, and they’re looking for more samples to try out. “Our process is so general I think we can make DMF or HMF out of any type of biomass,” he says.

Raines’s first foray into biofuels development was supported by the Great Lakes Bioenergy Research Center, a U.S. Department of Energy bioenergy research center located at the UW-Madison. Additional support was provided through a National Science Foundation Graduate Research Fellowship awarded to Binder.

Nicole Miller | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>