Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Step in breakdown of HIV proteins essential to recognition, destruction of infected cells

10.05.2011
Variations in peptide stability may alter targeting of infected cells by CD8 T cells

A key step in the processing of HIV within cells appears to affect how effectively the immune system's killer T cells can recognize and destroy infected cells. Researchers at the Ragon Institute of MGH, MIT and Harvard have found that – as HIV proteins are broken down within cells, a process that should lead to labeling infected cell for destruction by CD8 T cells – there is a great variability in the stability of resulting protein segments, variations that could significantly change how well cells are recognized by the immune system. Their report appears in the June Journal of Clinical Investigation.

"We have identified a novel mechanism by which HIV escapes recognition by virus-specific cytotoxic T cells, says Sylvie Le Gall, PhD, of the Ragon Institute, the paper's senior author. "This discovery may help us better understand the immune-system failure that characterizes HIV infection and provide information critical to the successful development of immune-system-based therapies."

CD8 T cells that have been programmed to target and destroy HIV-infected cells recognize those cells through tiny bits of viral protein, called peptides, displayed on the cell surface. Details of how HIV proteins are broken down into peptides and loaded onto the specialized molecules, called MHC Class I, that carry them to the cell surface are not well understood. Also unknown is whether particular HIV peptides are more effective than others in flagging cells for destruction.

Le Gall and her team first discovered that HIV peptides reduced to a length of 8 to 11 amino acids within infected cells varied greatly in their stability, with some breaking down further within seconds and others remaining unchanged for nearly an hour. Collaborators David Heckerman, MD, PhD, and Carl Kadie from Microsoft Research analyzed the biochemical features of 166 HIV peptides and identified particular structural patterns associated with either stability or instability. The researchers then showed that substituting a stability-associated structural motif for an instability motif significantly increased peptide stability, and vice-versa.

The stability of a peptide within the cell can significantly affect how much peptide is available to be loaded onto MHC Class I molecules and displayed on the cell surface. The authors found that several known HIV mutations significantly reduced peptide stability – one common mutation virtually abolished the cell-killing action of CD8 T cells. The Microsoft team members have developed a model to predict the probable stability of specific HIV peptides, but more research is needed to determine how variations in stability affect the presentation of the peptide segments called epitopes to CD8 cells and whether changes in peptide stability lead to a more efficient immune response.

"Efforts to develop T-cell-based vaccines need to focus on producing epitopes that elicit the most protective response," says Le Gall, an assistant professor of Medicine at Harvard Medical School. "Modulating peptide stability offers a unique way of regulating epitope presentation in favor of producing the most effective defence against HIV."

Additional co-authors of the Journal of Clinical Investigation report are lead author Estibaliz Lazaro, ,MD; Pamela Stamegna; Shao Chong Zhang, PhD; Pauline Gourdain, PhD; Nicole Y. Lai; Mei Zhang and Sergio A. Martinez, all of the Ragon Institute. The study was supported by grants from the Bill and Melinda Gates Foundation and the National Institute of Allergy and Infectious Disease.

The Ragon Institute of MGH, MIT and Harvard was established in 2009 with a gift from the Philip T. and Susan M. Ragon Foundation, creating a collaborative scientific mission among these institutions to harness the immune system to combat and cure human diseases. The primary initial focus of the institute is to contribute to the development of an effective AIDS vaccine. Administratively based at Massachusetts General Hospital, the Ragon Institute draws scientists and engineers from diverse backgrounds and areas of expertise across the Harvard and MIT communities and throughout the world, in order to apply the full arsenal of scientific knowledge to understanding mechanisms of immune control and immune failure and to apply these advances to directly benefit patients.

Sarah Dionne | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>