Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the first step affects the (watery) result

24.06.2010
German Scientists from Jena and Erlangen-Nürnberg show the way to a more effective creation of hydrogen

Energy from hydrogen – scientists from all over the world work on this solution to overcome the energy crisis. Amongst other things they try to use the sunlight as driving force for the splitting of water into hydrogen and oxygen.

In trying to copy the photosynthesis in the laboratory a team of scientists of the Universities of Jena and Erlangen-Nürnberg and of the Institute of Photonic Technology (IPHT) in Jena (Germany) made a huge step forward. The physiccists and chemists were able to prove in their tests, that the first step already affects the efficiency of hydrogen generation.

“This is as if you would decide about where you´re going to by turning the ignition key in the car,” says PD Dr Michael Schmitt from the Institute of Physical Chemistry (IPC) of the University of Jena. To put it scientifically: “The Franck-Cordon-point has to be created in such a way that the initial process of transferring electrons already points into the direction of the catalytic active centre.“ The results were published in the science journal „Angewandte Chemie Int. Ed.“.

In their tests for a more efficient energy conversion the scientists focus on chemical photo catalysts. With this light is being used to let electrons “jump“ well-directed from one subunit of the molecule to the other or to transport them over a ligand, which is a “bridge“.

Like the photosynthesis this process, which the chemists run in the laboratory, works in two main steps: A special metal complex with Ruthenium as its main component serves as an antenna which harvests the light. The Ruthenium then transfers an electron onto the reaction centre. The core of the reaction centre is a Palladium atom. At this metal centre the hydrogen is finally generated. But other than in nature not all electrons reach the palladium centre from the Ruthenium in the laboratory construction. Some choose “detours“, some enter “roundabouts“ or “blind alleys“ and thus are being lost for the reaction. “Supported by resonance Raman spectroscopy we were able to watch and see where the electron ends after directly after the photoexitation,“ describes Prof Dr Juergen Popp, director of IPC and IPHT. „Thereby we were able to develop a new synthesis paradigm“, Michael Schmitt adds. The team of scientists could prove that the efficiency of hydrogen generation depends on the light wavelength. It is more efficient the redder the light used for photo excitation is – light of a wavelength of 550 nm is ideal. “The redder the light the more electrons are transferred to the ligand, that connects the Ruthenium with the Palladium“, Schmitt says. Moreover the initial absorption step decides where the electron goes and thus how effective the generation of energy is.

“This knowledge enables us to put up well-directed barriers so that the electrons don´t take a ,wrong turn’ but exclusively end up at the Palladium“, says Prof Popp explaining the application potential of this fundamental research. In the laboratory the hydrogen generation is four times above former data but still far below the necessary rate. Now it is up to the chemists, like the participating Prof. Dr Sven Rau, to optimize the molecular catalysts, that “no electrons will be taken on by terminal ligands,“ as Schmitt explains.

The scientists know that it is still a long way to go to copy the photosynthesis of nature correctly and efficiently. “But due to our spectroscopic analysis we took a huge step on this way“, Prof Popp is sure though.

Original Publication:
Stefanie Tschierlei, Michael Karnahl, Martin Presselt, Benjamin Dietzek, Julien Guthmuller, Leticia González, Michael Schmitt, Sven Rau und Jürgen Popp: „Photochemisches Schicksal:„Photochemical Fate: The First Step Determines Efficiency of H2 Formation with a Supramolecular Photocatalyst“, Angew. Chem. Int. Ed. 2010, 122, 3981-3984.
Contact:
Prof. Dr. Jürgen Popp / PD Dr. Michael Schmitt
Institute of Physical Chemistry of Jena University
Helmholtzweg 4
D-07743 Jena
Phone: +049 (0)3641 / 948320 or 948367
Email: juergen.popp[at]uni-jena.de / m.schmitt[at]uni-jena.de

Axel Burchardt | idw
Further information:
http://www.uni-jena.de/en/start_en.html

Further reports about: CHEMISTRY IPC IPHT Palladium Ruthenium hydrogen generation

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>