Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the first step affects the (watery) result

24.06.2010
German Scientists from Jena and Erlangen-Nürnberg show the way to a more effective creation of hydrogen

Energy from hydrogen – scientists from all over the world work on this solution to overcome the energy crisis. Amongst other things they try to use the sunlight as driving force for the splitting of water into hydrogen and oxygen.

In trying to copy the photosynthesis in the laboratory a team of scientists of the Universities of Jena and Erlangen-Nürnberg and of the Institute of Photonic Technology (IPHT) in Jena (Germany) made a huge step forward. The physiccists and chemists were able to prove in their tests, that the first step already affects the efficiency of hydrogen generation.

“This is as if you would decide about where you´re going to by turning the ignition key in the car,” says PD Dr Michael Schmitt from the Institute of Physical Chemistry (IPC) of the University of Jena. To put it scientifically: “The Franck-Cordon-point has to be created in such a way that the initial process of transferring electrons already points into the direction of the catalytic active centre.“ The results were published in the science journal „Angewandte Chemie Int. Ed.“.

In their tests for a more efficient energy conversion the scientists focus on chemical photo catalysts. With this light is being used to let electrons “jump“ well-directed from one subunit of the molecule to the other or to transport them over a ligand, which is a “bridge“.

Like the photosynthesis this process, which the chemists run in the laboratory, works in two main steps: A special metal complex with Ruthenium as its main component serves as an antenna which harvests the light. The Ruthenium then transfers an electron onto the reaction centre. The core of the reaction centre is a Palladium atom. At this metal centre the hydrogen is finally generated. But other than in nature not all electrons reach the palladium centre from the Ruthenium in the laboratory construction. Some choose “detours“, some enter “roundabouts“ or “blind alleys“ and thus are being lost for the reaction. “Supported by resonance Raman spectroscopy we were able to watch and see where the electron ends after directly after the photoexitation,“ describes Prof Dr Juergen Popp, director of IPC and IPHT. „Thereby we were able to develop a new synthesis paradigm“, Michael Schmitt adds. The team of scientists could prove that the efficiency of hydrogen generation depends on the light wavelength. It is more efficient the redder the light used for photo excitation is – light of a wavelength of 550 nm is ideal. “The redder the light the more electrons are transferred to the ligand, that connects the Ruthenium with the Palladium“, Schmitt says. Moreover the initial absorption step decides where the electron goes and thus how effective the generation of energy is.

“This knowledge enables us to put up well-directed barriers so that the electrons don´t take a ,wrong turn’ but exclusively end up at the Palladium“, says Prof Popp explaining the application potential of this fundamental research. In the laboratory the hydrogen generation is four times above former data but still far below the necessary rate. Now it is up to the chemists, like the participating Prof. Dr Sven Rau, to optimize the molecular catalysts, that “no electrons will be taken on by terminal ligands,“ as Schmitt explains.

The scientists know that it is still a long way to go to copy the photosynthesis of nature correctly and efficiently. “But due to our spectroscopic analysis we took a huge step on this way“, Prof Popp is sure though.

Original Publication:
Stefanie Tschierlei, Michael Karnahl, Martin Presselt, Benjamin Dietzek, Julien Guthmuller, Leticia González, Michael Schmitt, Sven Rau und Jürgen Popp: „Photochemisches Schicksal:„Photochemical Fate: The First Step Determines Efficiency of H2 Formation with a Supramolecular Photocatalyst“, Angew. Chem. Int. Ed. 2010, 122, 3981-3984.
Contact:
Prof. Dr. Jürgen Popp / PD Dr. Michael Schmitt
Institute of Physical Chemistry of Jena University
Helmholtzweg 4
D-07743 Jena
Phone: +049 (0)3641 / 948320 or 948367
Email: juergen.popp[at]uni-jena.de / m.schmitt[at]uni-jena.de

Axel Burchardt | idw
Further information:
http://www.uni-jena.de/en/start_en.html

Further reports about: CHEMISTRY IPC IPHT Palladium Ruthenium hydrogen generation

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>