Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stemming the spread of cancer

21.09.2012
Okayama University researchers demonstrate that cancer stem cells can be produced from normal stem cells for new therapies to combat cancer
Okayama University researchers demonstrate that cancer stem cells can be produced from normal stem cells for new therapies to combat cancer

(Okayama, Japan, 20 September 2012) Okayama Universityfs Masaharu Seno and colleagues have demonstrated in vitro the development of cancer stem cells (CSCs) from a type of normal stem cell exposed to their hypothetical microenvironment of a tumor. The findings are also described in the inaugural September issue of Okayama University e-Bulletin: http://www.okayama-u.ac.jp/user/kouhou/ebulletin/index.html

Cancer stem cells (CSCs) have been proposed as an explanation for the spread of cancer. These cells are tumorigenic and have the capacity of both self-renewal and differentiation into a range of various cell types. In this concept, malignant tumors provide heterogeneous aspects derived from CSCs as well as normal stem cells provide tissue specific phenotype in response to their microenvironment.
Researchers have now demonstrated in vitro the development of CSCs from a type of normal stem cell exposed to their hypothetical microenvironment of a tumor. The results are the work of a group of scientists led by Masaharu Seno, a professor of Okayama University, with his collaborators in China and the US.

The researchers cultured mouse induced pluripotent stem (miPS) cells in a conditioned medium obtained from a number of mouse cancer cell lines. Finally, a population of stem cells was kept undifferentiated and proliferating while other stem cells differentiated into specialized cells, which were incapable of proliferation any more.
Since the survived miPS cells treated with the conditioned medium were found malignantly tumorigenic in vivo, they concluded that the cells could be defined as CSCs . gThe model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs,h explain the authors. The work should help breakthrough towards the development of new therapies to combat cancer.

Angiogenesis

Further information:
Okayama University
1-1-1 Tsushima-naka , Kita-ku ,
Okayama 700-8530, Japan
Planning and Public Information Division
E-mail: www-adm@adm.okayama-u.ac.jp
Website: http://www.okayama-u.ac.jp/index_e.html

About Okayama University

Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 14,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences. Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.
Website: http://www.okayama-u.ac.jp/index_e.html

Journal information
Authors: Ling Chen1,2,3, Tomonari Kasai1, Yueguang Li4, Yuh Sugii1, Guoliang Jin1, Masashi Okada1, Arun Vaidyanath1, Akifumi Mizutani1, Ayano Satoh5, Takayuki Kudoh1, Mary J. C. Hendrix6, David S. Salomon7, Li Fu8, Masaharu Seno1

ETitle of original paper: A model of cancer stem cells derived from mouse induced pluripotent stem cells
EJournal, volume, pages and year: PLoS One 7, e33544 (2012).
EDigital Object Identifier (DOI): 10.1371/journal.pone.0033544

EAffiliations:
1 Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
2 Japan Society for the Promotion of Science, Tokyo, Japan.
3 Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, Peoplefs Republic of China.
4 Department of General Surgery, Tianjin 4th Centre Hospital, Tianjin, Peoplefs Republic of China.
5 Multidisciplinary Division, Okayama University, Okayama, Japan.
6 Childrenfs Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America.
7 Laboratory of Mammary Biology and Tumorigenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.

8 State Key Laboratory of Breast Cancer Research, Department of Breast Cancer Pathology and Research Laboratory, Cancer Hospital of Tianjin Medical University, Tianjin, Peoplefs Republic of China

Source: Okayama University, Planning and Public Information Division

Adarsh Sandhu | Research asia research news
Further information:
http://www.okayama-u.ac.jp/index_e.html
http://www.researchsea.com
http://www.researchsea.com/html/article.php/aid/7426/cid/1?

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>