Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stemming the spread of cancer

Okayama University researchers demonstrate that cancer stem cells can be produced from normal stem cells for new therapies to combat cancer
Okayama University researchers demonstrate that cancer stem cells can be produced from normal stem cells for new therapies to combat cancer

(Okayama, Japan, 20 September 2012) Okayama Universityfs Masaharu Seno and colleagues have demonstrated in vitro the development of cancer stem cells (CSCs) from a type of normal stem cell exposed to their hypothetical microenvironment of a tumor. The findings are also described in the inaugural September issue of Okayama University e-Bulletin:

Cancer stem cells (CSCs) have been proposed as an explanation for the spread of cancer. These cells are tumorigenic and have the capacity of both self-renewal and differentiation into a range of various cell types. In this concept, malignant tumors provide heterogeneous aspects derived from CSCs as well as normal stem cells provide tissue specific phenotype in response to their microenvironment.
Researchers have now demonstrated in vitro the development of CSCs from a type of normal stem cell exposed to their hypothetical microenvironment of a tumor. The results are the work of a group of scientists led by Masaharu Seno, a professor of Okayama University, with his collaborators in China and the US.

The researchers cultured mouse induced pluripotent stem (miPS) cells in a conditioned medium obtained from a number of mouse cancer cell lines. Finally, a population of stem cells was kept undifferentiated and proliferating while other stem cells differentiated into specialized cells, which were incapable of proliferation any more.
Since the survived miPS cells treated with the conditioned medium were found malignantly tumorigenic in vivo, they concluded that the cells could be defined as CSCs . gThe model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs,h explain the authors. The work should help breakthrough towards the development of new therapies to combat cancer.


Further information:
Okayama University
1-1-1 Tsushima-naka , Kita-ku ,
Okayama 700-8530, Japan
Planning and Public Information Division

About Okayama University

Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 14,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences. Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.

Journal information
Authors: Ling Chen1,2,3, Tomonari Kasai1, Yueguang Li4, Yuh Sugii1, Guoliang Jin1, Masashi Okada1, Arun Vaidyanath1, Akifumi Mizutani1, Ayano Satoh5, Takayuki Kudoh1, Mary J. C. Hendrix6, David S. Salomon7, Li Fu8, Masaharu Seno1

ETitle of original paper: A model of cancer stem cells derived from mouse induced pluripotent stem cells
EJournal, volume, pages and year: PLoS One 7, e33544 (2012).
EDigital Object Identifier (DOI): 10.1371/journal.pone.0033544

1 Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
2 Japan Society for the Promotion of Science, Tokyo, Japan.
3 Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, Peoplefs Republic of China.
4 Department of General Surgery, Tianjin 4th Centre Hospital, Tianjin, Peoplefs Republic of China.
5 Multidisciplinary Division, Okayama University, Okayama, Japan.
6 Childrenfs Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America.
7 Laboratory of Mammary Biology and Tumorigenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.

8 State Key Laboratory of Breast Cancer Research, Department of Breast Cancer Pathology and Research Laboratory, Cancer Hospital of Tianjin Medical University, Tianjin, Peoplefs Republic of China

Source: Okayama University, Planning and Public Information Division

Adarsh Sandhu | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>