Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Your Own Stem Cells Can Treat Heart Disease

19.11.2009
Transplanting people’s own stem cells into heart lessens pain, improves ability to walk

The largest national stem cell study for heart disease showed the first evidence that transplanting a potent form of adult stem cells into the heart muscle of subjects with severe angina results in less pain and an improved ability to walk. The transplant subjects also experienced fewer deaths than those who didn't receive stem cells.

In the 12-month Phase II, double-blind trial, subjects' own purified stem cells, called CD34+ cells, were injected into their hearts in an effort to spur the growth of small blood vessels that make up the microcirculation of the heart muscle. Researchers believe the loss of these blood vessels contributes to the pain of chronic, severe angina.

"This is the first study to show significant benefit in pain reduction and improved exercise capacity in this population with very advanced heart disease," said principal investigator Douglas Losordo, M.D., the Eileen M. Foell Professor of Heart Research at the Northwestern University Feinberg School of Medicine and a cardiologist and director of the program in cardiovascular regenerative medicine at Northwestern Memorial Hospital, the lead site of the study.

Losordo, also director of the Feinberg Cardiovascular Research Institute, said this study provides the first evidence that a person's own stem cells can be used as a treatment for their heart disease. He cautioned, however, that the findings of the 25-site trial with 167 subjects, require verification in a larger, Phase III study.

He presented his findings Nov. 17 at the American Heart Association Scientific Sessions 2009.

Out of the estimated 1 million people in the U.S. who suffer from chronic, severe angina -- chest pain due to blocked arteries -- about 300,000 cannot be helped by any traditional medical treatment such as angioplasty, bypass surgery or stents. This is called intractable or severe angina, the severity of which is designated by classes. The subjects in Losordo's study were class 3 or 4, meaning they had chest pain from normal to minimal activities, such as from brushing their teeth or even resting.

The stem cell transplant is the first therapy to produce an improvement in severe angina subjects' ability to walk on a treadmill. Twelve months after the procedure, the transplant subjects were able to double their improvement on a treadmill compared to the placebo group. It also took twice as long until they experienced angina pain on a treadmill compared to the placebo group, and, when they felt pain, it went away faster with rest. In addition, they had fewer overall episodes of chest pain in their daily lives.

In the trial, the CD34+ cells were injected into 10 locations in the heart muscle. A sophisticated electromechanical mapping technology identifies where the heart muscle is alive but not functioning, because it is not receiving enough blood supply.

The study was supported by Baxter Healthcare Corporation. Losordo formerly was a paid consultant to Baxter.

Marla Paul is the health sciences editor. Contact her at marla-paul@northwestern.edu

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>