Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells show promise in repairing a child's heart

28.01.2011
Visionaries in the field of cardiac therapeutics have long looked to the future when a damaged heart could be rebuilt or repaired by using one's own heart cells. A study published in the February issue of Circulation, a scientific journal of the American Heart Association, shows that heart stem cells from children with congenital heart disease were able to rebuild the damaged heart in the laboratory.

Sunjay Kaushal, MD, PhD, surgeon in the Division of Cardiovascular Thoracic Surgery at Children's Memorial Hospital and assistant professor of surgery at Northwestern University Feinberg School of Medicine, who headed the study, believes these results show great promise for the growing number of children with congenital heart problems. With this potential therapy option these children may avoid the need for a heart transplant.

"Due to the advances in surgical and medical therapies, many children born with cardiomyopathy or other congenital heart defects are living longer but may eventually succumb to heart failure," said Kaushal. "This project has generated important pre-clinical laboratory data showing that we may be able to use the patient's own heart stem cells to rebuild their hearts, allowing these children to potentially live longer and have more productive lives."

Cells were obtained from patients ranging in age from a few days after birth to 13 years who were undergoing routine congenital cardiac surgery. Findings show that the number of heart stem cells was greatest in neonates and then rapidly decreased with age, and that the highest numbers of these stem cells are located in the upper right chamber of the heart, or the right atrium. The study also showed that the cardiac stem cells are functional and have the potential for use in repairing the damaged heart. Up until now, heart stem cell studies have addressed the adult diseased heart, but this is the first and largest systematic study to focus on children.

"Heart disease in children is different than heart disease in adults," said Kaushal. "Whereas adults might suffer heart failure from coronary artery disease or atherosclerosis, heart failure in children primarily occurs because they acquire cardiomyopathy or have a congenital condition in which the heart chambers are small or in the wrong position causing the heart to pump inefficiently. The potential of cardiac stem cell therapy for children is truly exciting," said Kaushal. Pending FDA approval, Kaushal hopes to begin clinical trials with children in the fall.

The study was funded by grants from the National Institutes of Health, the Thoracic Surgical Foundation for Research and Education, the Children's Heart Foundation and the North Suburban Medical Research Junior Board.

To access the article on line go to: http://circ.ahajournals.org/cgi/reprint/CIRCULATIONAHA.110.971622v1?maxtoshow=&hits=10&RESULTFORMAT=&fulltext=Mishra&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT

Children's Memorial Hospital is one of the top pediatric hospitals in the country according to U.S. News & World Report. It is the pediatric training hospital for Northwestern University Feinberg School of Medicine.

Julie Pesch | EurekAlert!
Further information:
http://www.childrensmemorial.org

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>