Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells reveal how illness-linked genetic variation affects neurons

18.08.2014

A genetic variation linked to schizophrenia, bipolar disorder and severe depression wreaks havoc on connections among neurons in the developing brain, a team of researchers reports.

The study, led by Guo-li Ming, M.D., Ph.D., and Hongjun Song, Ph.D., of the Johns Hopkins University School of Medicine and described online Aug. 17 in the journal Nature, used stem cells generated from people with and without mental illness to observe the effects of a rare and pernicious genetic variation on young brain cells. The results add to evidence that several major mental illnesses have common roots in faulty "wiring" during early brain development.


In this imag, cell nuclei are shown in blue and synapses in red and green.

Credit: Zhexing Wen/Johns Hopkins Medicine

"This was the next best thing to going back in time to see what happened while a person was in the womb to later cause mental illness," says Ming. "We found the most convincing evidence yet that the answer lies in the synapses that connect brain cells to one another."

Previous evidence for the relationship came from autopsies and from studies suggesting that some genetic variants that affect synapses also increase the chance of mental illness. But those studies could not show a direct cause-and-effect relationship, Ming says.

... more about:
»DISC1 »Medicine »activity »genes »illness »neurons »skin »synapses

One difficulty in studying the genetics of common mental illnesses is that they are generally caused by environmental factors in combination with multiple gene variants, any one of which usually could not by itself cause disease. A rare exception is the gene known as disrupted in schizophrenia 1 (DISC1), in which some mutations have a strong effect. Two families have been found in which many members with the DISC1 mutations have mental illness.

To find out how a DISC1 variation with a few deleted DNA "letters" affects the developing brain, the research team collected skin cells from a mother and daughter in one of these families who have neither the variation nor mental illness, as well as the father, who has the variation and severe depression, and another daughter, who carries the variation and has schizophrenia. For comparison, they also collected samples from an unrelated healthy person. Postdoctoral fellow Zhexing Wen, Ph.D., coaxed the skin cells to form five lines of stem cells and to mature into very pure populations of synapse-forming neurons.

After growing the neurons in a dish for six weeks, collaborators at Pennsylvania State University measured their electrical activity and found that neurons with the DISC1 variation had about half the number of synapses as those without the variation. To make sure that the differences were really due to the DISC1 variation and not to other genetic differences, graduate student Ha Nam Nguyen spent two years making targeted genetic changes to three of the stem cell lines.

In one of the cell lines with the variation, he swapped out the DISC1 gene for a healthy version. He also inserted the disease-causing variation into one healthy cell line from a family member, as well as the cell line from the unrelated control. Sure enough, the researchers report, the cells without the variation now grew the normal amount of synapses, while those with the inserted mutation had half as many.

"We had our definitive answer to whether this DISC1 variation is responsible for the reduced synapse growth," Ming says.

To find out how DISC1 acts on synapses, the researchers also compared the activity levels of genes in the healthy neurons to those with the variation. To their surprise, the activities of more than 100 genes were different. "This is the first indication that DISC1 regulates the activity of a large number of genes, many of which are related to synapses," Ming says.

The research team is now looking more closely at other genes that are linked to mental disorders. By better understanding the roots of mental illness, they hope to eventually develop better treatments for it, Ming says.

###

Other authors on the paper are Ziyuan Guo and Gong Chen of The Pennsylvania State University; Matthew A. Lalli, Elmer Guzman and Kenneth S. Kosik of the University of California, Santa Barbara; Xinyuan Wang, Yijing Su, Nam-Shik Kim, Ki-Jun Yoon, Jaehoon Shin, Ce Zhang, Georgia Makri, David Nauen, Huimei Yu, Cheng-Hsuan Chiang, Jizhong Zou, Kimberly M. Christian, Linzhao Cheng, Christopher A. Ross, Nadine Yoritomo and Russell L. Magolis of The Johns Hopkins University; and Kozo Kaibuchi of Nagoya University Graduate School of Medicine in Japan.

Shawna Williams | Eurek Alert!
Further information:
http://www.jhmi.edu

Further reports about: DISC1 Medicine activity genes illness neurons skin synapses

More articles from Life Sciences:

nachricht Protein scaffold
27.05.2015 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Seeing the action
27.05.2015 | University of California - Santa Barbara

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

More densely populated urban areas call for more urban quality

28.05.2015 | Architecture and Construction

The Arctic: Interglacial period with a break

28.05.2015 | Earth Sciences

New transregional special research field at the universities of Stuttgart and Constance

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>