Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells can repair a damaged cornea

06.03.2012
A new cornea may be the only way to prevent a patient going blind – but there is a shortage of donated corneas and the queue for transplantation is long.

Scientists at the Sahlgrenska Academy at the University of Gothenburg, Sweden, have for the first time successfully cultivated stem cells on human corneas, which may in the long term remove the need for donators.

Approximately 500 corneal transplantations are carried out each year in Sweden, and about 100,000 in the world. The damaged and cloudy cornea that is turning the patient blind is replaced with a healthy, transparent one. But the procedure requires a donated cornea, and there is a severe shortage of donated material. This is particularly the case throughout the world, where religious or political views often hinder the use of donated material.

Replacing donated corneas
Scientists at the Sahlgrenska Academy, University of Gothenburg, have taken the first step towards replacing donated corneas with corneas cultivated from stem cells.

Scientists Charles Hanson and Ulf Stenevi have used defective corneas obtained from the ophthalmology clinic at Sahlgrenska University Hospital in Mölndal. Their study is now published in the journal Acta Ophthalmologica, and shows how human stem cells can be caused to develop into what are known as “epithelial cells” after 16 days’ culture in the laboratory and a further 6 days’ culture on a cornea. It is the epithelial cells that maintain the transparency of the cornea.

First time ever on human corneas
“Similar experiments have been carried out on animals, but this is the first time that stem cells have been grown on damaged human corneas. It means that we have taken the first step towards being able to use stem cells to treat damaged corneas”, says Charles Hanson.

“If we can establish a routine method for this, the availability of material for patients who need a new cornea will be essentially unlimited. Both the surgical procedures and the aftercare will also become much more simple”, says Ulf Stenevi.

Few clinics conduct transplants
Only a few clinics are currently able to transplant corneas. Many of the transplantations in Sweden are carried out at the ophthalmology clinic at Sahlgrenska University Hospital, Department of Ophthalmology, Mölndal.
The article “Transplantation of human embryonic stem cells onto a partially wounded human cornea in vitro” was published in Acta Ophthalmologica on 27 January.

Link to the article: http://bit.ly/xm3SeM

Bibliographic data:
Title: Transplantation of human embryonic stem cells onto a partially wounded human cornea in vitro
Journal: Acta Ophthalmologica on 27 January
Authors: Charles Hanson, Thorir Hardarson, Catharina Ellerstro, Markus Nordberg, Gunilla Caisander, Mahendra Rao, Johan Hyllner3 and Ulf Stenevi

Link to the article: http://bit.ly/xm3SeM

For more information, please contact: Charles Hanson, Associate Professor at the Sahlgrenska Academy, University of Gothenburg
Telephone: +46 31 342 3572
Mobile: +46 76 715 9877
E-mail: charles.hanson@obgyn.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://bit.ly/xm3SeM

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>