Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cells Can Become Anything – but Not Without This Protein

22.08.2012
How do stem cells preserve their ability to become any type of cell in the body? And how do they “decide” to give up that magical state and start specializing?

If researchers could answer these questions, our ability to harness stem cells to treat disease could explode. Now, a University of Michigan Medical School team has published a key discovery that could help that goal become reality.


Dou lab, University of Michigan

Mouse stem cells that have two normal copies of the Mof gene (left) function normally - but those with one or both copies malfunctioning lose their ability to self-renew (middle and right).

In the current issue of the prestigious journal Cell Stem Cell, researcher Yali Dou, Ph.D., and her team show the crucial role of a protein called Mof in preserving the ‘stem-ness’ of stem cells, and priming them to become specialized cells in mice.

Their results show that Mof plays a key role in the “epigenetics” of stem cells -- that is, helping stem cells read and use their DNA. One of the key questions in stem cell research is what keeps stem cells in a kind of eternal youth, and then allows them to start “growing up” to be a specific type of tissue.

Dou, an associate professor of pathology and biological chemistry, has studied Mof for several years, puzzling over the intricacies of its role in stem cell biology.

She and her team have zeroed in on the factors that add temporary tags to DNA when it’s coiled around tiny spools called histones. In order to read their DNA, cells have to unwind it a bit from those spools, allowing the gene-reading mechanisms to get access to the genetic code and transcribe it. The temporary tags added by Mof act as tiny beacons, guiding the “reader” mechanism to the right place.

“Simply put, Mof regulates the core transcription mechanism – without it you can’t be a stem cell,” says Dou. “There are many such proteins, called histone acetyltransferases, in cells – but only MOF is important in undifferentiated cells.”

Dou and her team also have published on another protein involved in DNA transcription, called WDR5, that places tags that are important during transcription. But Mof appears to control the process that actually allows cells to determine which genes it wants to read – a crucial function for stem-ness. “Without Mof, embryonic stem cells lost their self-renewal capability and started to differentiate,” she explains.

The new findings may have particular importance for work on induced pluripotent stem cells – the kind of stem cells that don’t come from an embryo, but are made from “adult” tissue.

IPCS research holds great promise for disease treatment because it could allow a patient to be treated with stem cells made from their own tissue. But the current way of making IPSCs from tissue involves a process that uses a cancer-causing gene – a step that might give doctors and patients pause.

Dou says that further work on Mof might make it possible to stop using that potentially harmful approach. But further research will be needed.

What they will focus on is how Mof marks the DNA structures called chromatin to keep parts of the genome readily accessible. In stem cells, scientists have shown, many areas of DNA are kept open for access – probably because stem cells need to use their DNA to make many proteins that keep them from ‘growing up.’

Once a stem cell starts to differentiate, or become a certain specialized type of cell, parts of the DNA close up and aren’t as accessible. Many scientific teams have studied this “selective silencing” and the factors that cause stem cells to start specializing by reading only certain genes. But few have looked at the factors that facilitate broad-range DNA transcription to preserve stem-ness.

“Mof marks the areas that need to stay open and maintains the potential to become anything,” Dou explains. Its crucial role in many species is hinted at by the fact that the gene to make Mof has the same sequence in fruit flies and mice.

“If you think about stem cell biology, the self-renewal is one aspect that makes stem cells unique and powerful, and the differentiation is another,” says Dou. “People have looked a lot at differentiation to make cells useful for therapy in the future – but the stem cell itself is actually pretty fascinating. So far, Mof is the only histone acetyltransferase found to support the stemness of embryonic stem cells.”

In addition to Dou, the research team includes her former postdoctoral fellow Xiangzhi Li, Ph.D., now at Shandong University in China; colleagues from the Department of Biostatistics and Bioinformatics in the Rollins School of Public Health at Emory University; and colleagues from the Laboratory of Gene Expression at the National Institutes of Health.

The work was funded by the National Institutes of Health (NIGMS R01GM082856 and NHGRI R01HG005119), the American Cancer Society, and by the National Natural Science Foundation of China.

Reference: Cell Stem Cell 11, 2 - 163–178, August 2012

For more information on stem cell research at U-M, visit www.stemcellresearch.umich.edu

Kara Gavin | Newswise Science News
Further information:
http://www.umich.edu
http://www.stemcellresearch.umich.edu

More articles from Life Sciences:

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>