Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells used to model infant birth defect

19.03.2010
Findings reveal why a longstanding treatment works, and suggest better approaches

Hemangiomas -- strawberry-like birthmarks that commonly develop in early infancy -- are generally harmless, but up to 10 percent cause tissue distortion or destruction and sometimes obstruction of vision or breathing.

Since the 1960s, problematic hemangiomas have been treated with corticosteroids such as dexamethasone or prednisone. But steroids have considerable side effects, don't always work, and their mechanism of action in hemangioma has remained a mystery.

Researchers at Children's Hospital Boston recently discovered that infantile hemangiomas originate from stem cells, and have used these stem cells to better understand this tumor in the laboratory. In the March 18 issue of The New England Journal of Medicine, they show that steroids target hemangioma stem cells specifically, reveal their mechanism of their action and suggest other possible ways to halt and shrink hemangiomas.

Hemangiomas, affecting 4 to 10 percent of infants, are noncancerous tumors consisting of a tangled mass of blood vessels. Previously, it was assumed that steroids act on endothelial cells, which make up about 30 percent of cells in the tumor. The new research, led by dermatologist Shoshana Greenberger, MD, PhD, working in the lab of Joyce Bischoff, PhD, in Children's Vascular Biology Program, shows that steroids interfere with a much rarer and more primitive cell type - hemangioma stem cells.

Greenberger and Bischoff further showed that steroids work by inhibiting hemangioma stem cells' ability to stimulate blood vessel growth, and that they do so by shutting down production of a specific factor called vascular endothelial growth factor (VEGF-A). VEGF is well known as a stimulator of angiogenesis (blood vessel growth) in cancer and age-related macular degeneration.

"We now have more therapies targeting VEGF, so our findings open the way to finding a more specific and safer therapy for hemangioma," says Greenberger.

Steroids usually result only in stabilization of hemangioma growth, and about 30 percent of hemangiomas don't respond to steroid treatment. Steroids also have side effects including facial swelling, hyperactivity, growth retardation and increased blood pressure. Although the effects on appearance may seem minor, research indicates that a baby's physical appearance can interfere with maternal bonding.

"My dream has always been to give a drug to stop hemangioma at its first appearance," says Children's plastic surgeon John Mulliken, MD, co-director of Children's Vascular Anomalies Center and a co-author on the study.

Greenberger, Bischoff and colleagues worked with hemangioma stem cells isolated from patient tissue samples provided by Mulliken, and showed that:

When human hemangioma stem cells were pretreated with dexamethasone, then implanted in mice, the tumors that formed had far fewer blood vessels.
Dexamethasone suppressed the stem cells' production of VEGF-A, but did not suppress VEGF-A production by endothelial cells from the same hemangioma.
When VEGF-A production was suppressed in hemangioma stem cells using shRNA silencing, then implanted in the mice, there was an 89 percent reduction in vessel growth.

VEGF-A was detected in actively growing hemangiomas, but not in regressing (involuting) hemangiomas.


Earlier research in Bischoff's lab and that of Bjorn Olsen, MD, PhD, of the Harvard School of Dental Medicine, indicates that hemangiomas may result from an in utero mutation in a stem cell destined to become an endothelial cell, causing a disruption in the normally well-ordered process of blood vessel development. Under a 2008 Translational Research Program grant from Children's, Bischoff's lab has been using hemangioma stem cells to test a library of existing medications that might specifically inhibit the proliferation of the hemangioma stem cells, and thereby limit growth of the hemangioma tumor.

"Steroids are inhibiting expression of a central regulator of blood vessel growth: VEGF-A," says Bischoff. "But we'd like to target the stem cell itself - stop its proliferation, prevent it from differentiating into unwanted blood vessels and, at the same time, eliminate the cellular source of VEGF-A."

The study was funded by the National Institutes of Health, the Translational Research Program at Children's Hospital Boston, a Harvard Skin Diseases Pilot Study Grant, Sheba Medical Center (Israel), and the John Butler Mulliken Foundation.

Citation: Greenberger S, Boscolo E, Adini I, Mulliken J and Bischoff J. Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. N Engl J Med 2010 Mar 18; 362(11):30-38.

Contact:
Keri Stedman
617-919-3110
keri.stedman@childrens.harvard.edu
Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 13 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School.

Keri Stedman | EurekAlert!
Further information:
http://www.childrenshospital.org/
http://www.harvard.edu

More articles from Life Sciences:

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

nachricht Calcium may play a role in the development of Parkinson's disease
19.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>