Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells used to model infant birth defect

19.03.2010
Findings reveal why a longstanding treatment works, and suggest better approaches

Hemangiomas -- strawberry-like birthmarks that commonly develop in early infancy -- are generally harmless, but up to 10 percent cause tissue distortion or destruction and sometimes obstruction of vision or breathing.

Since the 1960s, problematic hemangiomas have been treated with corticosteroids such as dexamethasone or prednisone. But steroids have considerable side effects, don't always work, and their mechanism of action in hemangioma has remained a mystery.

Researchers at Children's Hospital Boston recently discovered that infantile hemangiomas originate from stem cells, and have used these stem cells to better understand this tumor in the laboratory. In the March 18 issue of The New England Journal of Medicine, they show that steroids target hemangioma stem cells specifically, reveal their mechanism of their action and suggest other possible ways to halt and shrink hemangiomas.

Hemangiomas, affecting 4 to 10 percent of infants, are noncancerous tumors consisting of a tangled mass of blood vessels. Previously, it was assumed that steroids act on endothelial cells, which make up about 30 percent of cells in the tumor. The new research, led by dermatologist Shoshana Greenberger, MD, PhD, working in the lab of Joyce Bischoff, PhD, in Children's Vascular Biology Program, shows that steroids interfere with a much rarer and more primitive cell type - hemangioma stem cells.

Greenberger and Bischoff further showed that steroids work by inhibiting hemangioma stem cells' ability to stimulate blood vessel growth, and that they do so by shutting down production of a specific factor called vascular endothelial growth factor (VEGF-A). VEGF is well known as a stimulator of angiogenesis (blood vessel growth) in cancer and age-related macular degeneration.

"We now have more therapies targeting VEGF, so our findings open the way to finding a more specific and safer therapy for hemangioma," says Greenberger.

Steroids usually result only in stabilization of hemangioma growth, and about 30 percent of hemangiomas don't respond to steroid treatment. Steroids also have side effects including facial swelling, hyperactivity, growth retardation and increased blood pressure. Although the effects on appearance may seem minor, research indicates that a baby's physical appearance can interfere with maternal bonding.

"My dream has always been to give a drug to stop hemangioma at its first appearance," says Children's plastic surgeon John Mulliken, MD, co-director of Children's Vascular Anomalies Center and a co-author on the study.

Greenberger, Bischoff and colleagues worked with hemangioma stem cells isolated from patient tissue samples provided by Mulliken, and showed that:

When human hemangioma stem cells were pretreated with dexamethasone, then implanted in mice, the tumors that formed had far fewer blood vessels.
Dexamethasone suppressed the stem cells' production of VEGF-A, but did not suppress VEGF-A production by endothelial cells from the same hemangioma.
When VEGF-A production was suppressed in hemangioma stem cells using shRNA silencing, then implanted in the mice, there was an 89 percent reduction in vessel growth.

VEGF-A was detected in actively growing hemangiomas, but not in regressing (involuting) hemangiomas.


Earlier research in Bischoff's lab and that of Bjorn Olsen, MD, PhD, of the Harvard School of Dental Medicine, indicates that hemangiomas may result from an in utero mutation in a stem cell destined to become an endothelial cell, causing a disruption in the normally well-ordered process of blood vessel development. Under a 2008 Translational Research Program grant from Children's, Bischoff's lab has been using hemangioma stem cells to test a library of existing medications that might specifically inhibit the proliferation of the hemangioma stem cells, and thereby limit growth of the hemangioma tumor.

"Steroids are inhibiting expression of a central regulator of blood vessel growth: VEGF-A," says Bischoff. "But we'd like to target the stem cell itself - stop its proliferation, prevent it from differentiating into unwanted blood vessels and, at the same time, eliminate the cellular source of VEGF-A."

The study was funded by the National Institutes of Health, the Translational Research Program at Children's Hospital Boston, a Harvard Skin Diseases Pilot Study Grant, Sheba Medical Center (Israel), and the John Butler Mulliken Foundation.

Citation: Greenberger S, Boscolo E, Adini I, Mulliken J and Bischoff J. Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. N Engl J Med 2010 Mar 18; 362(11):30-38.

Contact:
Keri Stedman
617-919-3110
keri.stedman@childrens.harvard.edu
Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 13 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School.

Keri Stedman | EurekAlert!
Further information:
http://www.childrenshospital.org/
http://www.harvard.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>