Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How stem cells make skin

14.09.2009
EMBL scientists come a step closer to understanding skin, breast and other cancers

Stem cells have a unique ability: when they divide, they can either give rise to more stem cells, or to a variety of specialised cell types.

In both mice and humans, a layer of cells at the base of the skin contains stem cells that can develop into the specialised cells in the layers above. Scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, in collaboration with colleagues at the Centro de Investigaciones Energ¨¦ticas, Medioambientales y Tecnologicas (CIEMAT) in Madrid, have discovered two proteins that control when and how these stem cells switch to being skin cells. The findings, published online today in Nature Cell Biology, shed light on the basic mechanisms involved not only in formation of skin, but also on skin cancer and other epithelial cancers.

At some point in their lives, the stem cells at the base of the skin stop proliferating and start differentiating into the cells that form the skin itself. To do so, they must turn off the ¡®stem cell programme¡¯ in their genes and turn on the ¡®skin cell programme¡¯. Researchers suspected that a family of proteins called C/EBPs might be involved in this process, as they were known to regulate it in other types of stem cell, but had so far failed to identify which C/EBP protein controlled the switch in skin. Claus Nerlov and his group at EMBL Monterotondo discovered it was not one protein, but two: C/EBP¦Á and C/EBP¦Â.

The EMBL researchers used genetic engineering techniques to delete the genes that encode C/EBP¦Á and ¦Â specifically in the skin of mouse embryos, and found that without these proteins the skin of the mice did not form properly.

¡°Mice with neither C/EBP¦Á nor ¦Â had taut and shiny skin that couldn¡¯t keep the water inside their bodies¡±, Nerlov explains, ¡°they lacked many of the proteins that make skin mechanically strong and water tight, and they died of de-hydration shortly after birth¡±.

However, a single working copy of either the gene for C/EBP¦Á or the gene for C/EBP¦Â was enough to ensure that skin developed properly. This means that the two proteins normally do the same job in the skin¡¯s stem cells - an unexpected redundancy, which may have arisen because there are so many stem cells in skin that a tight control on proliferation is needed to avoid problems like cancer. Or it may simply be a by-product of the fact that these two proteins have different functions in other situations, such as wound healing or repair of sunlight-induced skin damage.

One of the hallmarks of epithelial cancers - which include skin, breast, and oral cancers - is that they have genes turned on which would normally only be expressed in embryonic stem cells, and which may help cancer cells divide indefinitely. Such genes become re-expressed in the skin in the absence of C/EBPs. So, by understanding how C/EBP¦Á and ¦Â turn off such ¡®stem cell¡¯ programmes, researchers hope to come a step closer to finding ways to fight such cancers.

When Nerlov and colleagues looked at how C/EBP¦Á and -¦Â work in the skin, they found that these proteins also regulate a number of other molecules that control skin development. Several important pathways known to control skin and hair formation were improperly activated in the mice lacking C/EBP¦Á and -¦Â.

¡°This is a very important discovery¡±, says Nerlov. ¡°It opens up a lot of new areas, because we can see how these proteins control virtually every other molecule known to regulate skin cell differentiation. It seems to be a key piece in the puzzle of how our skin is formed and maintained throughout life.¡±

Policy regarding use
Press and Picture Releases
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
Tel: +49 6221 387452
Fax: +49 6221 387525
anna.wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org
http://www.embl.de/aboutus/communication_outreach/media_relations/2009/090913_Monterotondo/index.html

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>