Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How stem cells make skin

EMBL scientists come a step closer to understanding skin, breast and other cancers

Stem cells have a unique ability: when they divide, they can either give rise to more stem cells, or to a variety of specialised cell types.

In both mice and humans, a layer of cells at the base of the skin contains stem cells that can develop into the specialised cells in the layers above. Scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, in collaboration with colleagues at the Centro de Investigaciones Energ¨¦ticas, Medioambientales y Tecnologicas (CIEMAT) in Madrid, have discovered two proteins that control when and how these stem cells switch to being skin cells. The findings, published online today in Nature Cell Biology, shed light on the basic mechanisms involved not only in formation of skin, but also on skin cancer and other epithelial cancers.

At some point in their lives, the stem cells at the base of the skin stop proliferating and start differentiating into the cells that form the skin itself. To do so, they must turn off the ¡®stem cell programme¡¯ in their genes and turn on the ¡®skin cell programme¡¯. Researchers suspected that a family of proteins called C/EBPs might be involved in this process, as they were known to regulate it in other types of stem cell, but had so far failed to identify which C/EBP protein controlled the switch in skin. Claus Nerlov and his group at EMBL Monterotondo discovered it was not one protein, but two: C/EBP¦Á and C/EBP¦Â.

The EMBL researchers used genetic engineering techniques to delete the genes that encode C/EBP¦Á and ¦Â specifically in the skin of mouse embryos, and found that without these proteins the skin of the mice did not form properly.

¡°Mice with neither C/EBP¦Á nor ¦Â had taut and shiny skin that couldn¡¯t keep the water inside their bodies¡±, Nerlov explains, ¡°they lacked many of the proteins that make skin mechanically strong and water tight, and they died of de-hydration shortly after birth¡±.

However, a single working copy of either the gene for C/EBP¦Á or the gene for C/EBP¦Â was enough to ensure that skin developed properly. This means that the two proteins normally do the same job in the skin¡¯s stem cells - an unexpected redundancy, which may have arisen because there are so many stem cells in skin that a tight control on proliferation is needed to avoid problems like cancer. Or it may simply be a by-product of the fact that these two proteins have different functions in other situations, such as wound healing or repair of sunlight-induced skin damage.

One of the hallmarks of epithelial cancers - which include skin, breast, and oral cancers - is that they have genes turned on which would normally only be expressed in embryonic stem cells, and which may help cancer cells divide indefinitely. Such genes become re-expressed in the skin in the absence of C/EBPs. So, by understanding how C/EBP¦Á and ¦Â turn off such ¡®stem cell¡¯ programmes, researchers hope to come a step closer to finding ways to fight such cancers.

When Nerlov and colleagues looked at how C/EBP¦Á and -¦Â work in the skin, they found that these proteins also regulate a number of other molecules that control skin development. Several important pathways known to control skin and hair formation were improperly activated in the mice lacking C/EBP¦Á and -¦Â.

¡°This is a very important discovery¡±, says Nerlov. ¡°It opens up a lot of new areas, because we can see how these proteins control virtually every other molecule known to regulate skin cell differentiation. It seems to be a key piece in the puzzle of how our skin is formed and maintained throughout life.¡±

Policy regarding use
Press and Picture Releases
EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Anna-Lynn Wegener
Press Officer
Meyerhofstrasse 1
D-69117 Heidelberg
Tel: +49 6221 387452
Fax: +49 6221 387525

Anna-Lynn Wegener | EMBL
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>