Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells and leukemia battle for marrow microenvironment

19.12.2008
Tipping scales toward stem cells could improve outcomes

Learning how leukemia takes over privileged "niches" within the bone marrow is helping researchers develop treatment strategies that could protect healthy blood-forming stem cells and improve the outcomes of bone marrow transplantation for leukemia and other types of cancer.

In a paper in the journal Science, available early online Dec. 19, 2008, researchers from the University of Chicago Medical Center show that by blocking one of the chemical signals that leukemic cells release, they could help prevent the cells that mature to become red and white blood cells from being shut down by the cancerous invader.

"We found an approach, in our mouse model, that could help protect the cells that give rise to healthy blood cells, and improve their accessibility for use in autologous transplantation," said study author Dorothy Sipkins, MD, PhD, assistant professor of medicine at the University of Chicago Medical Center. "The next step is to confirm this in human studies."

Sipkins and colleagues study the molecular characteristics of tissue microenvironments, or "niches," within the bone marrow where normal, healthy bone marrow stem cells divide and mature. From these niches, the stem cells produce all the different types of blood cells involved in transporting oxygen from the lungs to the rest of the body, fighting off infections and controlling blood clotting.

In patients with leukemia, however, these stem cells lose their powers. Part of the problem is that they are being crowded out by the rapid multiplication and spread of diseased cells as they take over the bone marrow, but this isn't always the explanation.

Sipkins and colleagues have shown that the process is far more complicated, and focused, than simply overcrowding. Using sophisticated microscopy tools, they developed systems to monitor the movements of leukemia cells and hematopoietic progenitor cells (HPCs)--a group of cells that includes stem cells as well as more differentiated, though still primitive, progenitor cells that give rise to the various kinds of blood cells--as they struggled for these coveted niche sites.

One of the first actions of cancer cells, they found, is to settle into these niches, taking over the specialized supportive environments that HPCs need to perform their crucial role.

Within days of taking over a niche, leukemia cells began releasing a chemical signal, called stem cell factor (SCF), which attracts normal stem cells back to sites near their now-captive niche. Within one month, the leukemic cells could induce HPCs to leave even tumor-free niches and migrate to malignant sites.

But when the HPCs arrive, other signals released by leukemic cells interfere with the production of healthy new blood cells. As their microenvironments were taken over, the number of HPCs declined. HPCs also stopped responding to drugs designed to coax them out of the bone marrow and into the blood stream, where they could be harvested and used for transplantation.

Sipkins' team was able to blunt this effect by blocking the release of stem cell factor by tumor cells. When the researchers inhibited stem cell factor, the number of HPCs went back up, as did their ability to migrate out of the bone marrow.

"Our data suggest that therapeutic targeting of SCF may increase the hematopoietic reserve and improve outcomes for bone marrow transplantation and autologous stem cell harvest in the setting of hematopoietic malignancy," the authors conclude.

"This is not a cure for leukemia," Sipkins said, "but it's one more tool. We like to hit cancer from all sides. This approach could potentially boost the immune system's response to the cancer by protecting the HPCs that are the source of mature immune cells. It could also maintain the patient's ability to tolerate treatment and to remain active."

"If human stem cells respond in the same way as mouse cells do, it could buy us time to apply other therapies," Sipkins added. "By preserving the activity of HPCs and potentially boosting the immune system, the body's own weapon again leukemia, we support the patient and take away one of the disease's weapons."

It could also make transplantation an option for more patients, enabling physicians to collect stem cells from the peripheral blood, which could be banked for bone marrow "rescue," a technique that restores the patient's marrow after it was damaged by high-dose chemotherapy targeted at the leukemia."

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>