Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells derived from amniotic tissues have immunosuppressive properties

19.01.2015

Japanese research also report the stem cells have effect on natural killer cells and monocyte function

Stem cells derived from human amnion have for some time been considered promising for cell therapies because of their ease of access, ability to differentiate, and absence of ethical issues. Now, a Japanese research team has found that stem cells derived from human female amnion also have immunosuppressive activity and that the addition of antibodies to specific factors can enhance their immunosuppressive potential.

The study will be published in a future issue of Cell Transplantation and is currently freely available on-line as an unedited early e-pub at: http://www.ingentaconnect.com/content/cog/ct/pre-prints/content-CT-1273_Li_et_al.

The amniotic membrane is a tissue of fetal origin comprised of three layers. It is thought that there is a special immunologic mechanism protecting the fetus, so researchers were interested in finding out what immunological properties might reside in - and be extractable from - amnion cells.

"The human amniotic membrane contains both epithelial cells and mesenchymal cells," said study co-author Dr. Toshio Nikaido, Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences at the University of Toyama, Toyoma, Japan. "Both kinds of cells have proliferation and differentiation characteristics, making the amniotic membrane a promising and attractive source for amnion-derived cells for transplantation in regenerative medicine. It is clear that these cells have promise, although the mechanism of their immune modulation remains to be elucidated."

In this study, amnion-derived cells exerted an inhibitory effect on natural killer cells (NKs) and induced white blood cell activation. The researchers reported that the amnion-derived cells saw increases in interleukin-10 (IL-10).

"We consider that IL-10 was involved in the function of amnion-derived cells toward NK cells," explained Dr. Nikaido. "The immunomodulation of amnion-derived cells is a complicated procedure involving many factors, among which IL-10 and prostaglandin E2 (PGE2) play important roles."

Naturally occurring prostaglandins, such as PGE2, have important effects in labor and also stimulate osteoblasts to release factors that stimulate bone resorption by osteoclasts. PGE2 also suppresses T cell receptor signaling and may play a role in resolution of inflammation.

The use of antibodies against PGE2 and IL-10 removed the immunosuppressive effects of the amnion-derived cells by increasing natural killer cell cytotoxicity. This implies that these two factors are contributing elements to the immunosuppressive abilities of amnion-derived cells.

"Soluble factors IL-10 and PGE2 produced by amnion-derived cells may suppress allogenic, or "other" related immune responses," concluded Dr. Nikaido. "Our findings support the hypothesis that these cells have potential therapeutic use. However, further study is needed to identify the detailed mechanisms responsible for their immodulatory effects. Amnion-derived cells must be transplanted into mouse models for further in vivo analysis of their immunosuppressive activity or anti-inflammatory effects."

Contact

Dr. Toshio Nikaido
Department of Regenerative Medicine
Graduate School of Medicine and Pharmaceutical Sciences
University of Toyama
Email: tnkaido@med.u-toyama.ac.jp
Tel: + 81-76-434-7210
Fax: +81-76-434-5011

Citation: Li, J.; Koike-Soko, C.; Sugimoto, J.; Yoshida, T.; Okabe, M.; Nikaido, T. Human Amnion-derived Stem Cells have Immunosuppressive Properties on NK cells and Monocytes. Cell Transplant. Appeared or available on-line: October 20th 2014.

The Coeditors-in-chief for Cell Transplantation are at the Diabetes Research Institute, University of Miami Miller School of Medicine and Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan. Contact, Camillo Ricordi, MD at ricordi@miami.edu or Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or David Eve, PhD at celltransplantation@gmail.com

News release by Florida Science Communications http://www.sciencescribe.net

Media Contact

Robert Miranda
cogcomm@aol.com

Robert Miranda | EurekAlert!

Further reports about: Aging BRAIN Brain Repair Cell Medicine Stem Transplantation amniotic amniotic membrane

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>