Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells take cues from fluid in the brain

14.03.2011
Proteins in fluids bathing the brain are essential for building the brain, discover scientists in a report published March 10 in the journal Neuron. The finding promises to advance research related to neurological disease, cancer and stem cells.

Before now, the fluid surrounding the brain was generally considered to be a sort of salt-solution that simply maintained the brain's ionic balance. Recent reports of fluctuating proteins in the fluid suggested otherwise, however.

And thus, a multi-institutional research teams at the Children's Hospital in Boston, led by Maria Lehtinen, Mauro Zappaterra and Christopher Walsh and researchers from the George Washington University School of Medicine and Health Sciences in Washington, D.C., decided to take a closer look at what proteins in the fluid do. What they found shocked them: As embryos and their brains are growing, a type of protein that tells brain cells to multiply increases in the so-called cerebrospinal fluid.

"This study is a game changer," says Anthony LaMantia, director of the GW Institute for Neuroscience at the GW School of Medicine and Health Sciences and an author on the paper, along with Thomas Maynard, Associate Professor of Pharmacology and Physiology at GW. "It's remarkable that signals are coming from the cerebrospinal fluid – it makes sense but no one really thought about it in this way."

Brain cells in the cortex -- the part of the brain responsible for cognition, learning and memory -- multiply and move to their appropriate position between the second and third trimester of embryonic development in humans. But until now, researchers have had little luck finding the molecular signals that direct the process as well as determining how the signals get delivered to the cells that need them.

The current team extracted cerebrospinal fluid from mouse embryos around two weeks after conception, when their brains develop most quickly. The fluid contained high levels of a protein, insulin-like growth factor or Igf2, which is known to help stem cells multiply and differentiate. Notably, the protein isn't elevated after birth. When the authors blocked Igf2, stem cells in the brain stopped making brain cells, which resulted in abnormally tiny mice brains. And when the team placed brain stem cells in a dish filled with Igf2-rich, embryonic cerebrospinal fluid, the cells proliferated rapidly. "This was clearly the environment the stem cells needed to be happy," LaMantia explains.

Brain cell proliferation is only a good thing when the time is right, however. After all, unrestrained cell multiplication leads to tumors. According to this report, Igf2 knows it's time to activate in the fluid because of proteins in long cells that surround the fluid. These long glial cells stretch from the inner part of the brain, where the fluid is, to its outer layer. They form early in brain development, and younger brain cells crawl along them during development as they find their appropriate positions like patrons filing into an opera house. At the innermost-end of the cells, at a spot called the apical domain, two proteins regulate Igf2 by altering other proteins at the surface of the glial cells, which bind to Ifg2.

If one of the steps in this pathway goes awry, Ifg2 could be activated at the wrong time causing uncontrolled proliferation. Indeed, brain cancer patients with the worst prognosis appear to have the highest levels of Igf2.

However, the fact that vital signals are sent from cerebrospinal fluid could be good news for cancer patients. "It's difficult to deliver a drug that will influence a specific spot within the brain tissue," says LaMantia. Instead, clinicians might one day infuse brain fluid with medicine – possibly one that blocks the signals from Igf2 telling cells to proliferate. "The possibilities for using the fluid as an efficient mechanism to deliver small molecule drugs are endless," he says.

Stem cell researchers now have another possible mechanism to explore in regards to how stem cells in other parts of the body differentiate and multiply. Perhaps researchers might find important proteins in what was thought to be benign fluid associated with the lungs, intestines, or other organs.

Finally, the study contributes to research on schizophrenia, autism and other neurological disorders thought to result from an erroneous arrangement of brain cells. Researchers must learn how brain development goes awry before they can design treatments, and therefore they must know how brain cells proliferate and move to the right position normally.

"This study was a massive undertaking requiring multiple labs with different resources," says LaMantia. "This is a remarkable line of investigation, and there are enormous possibilities for future work in this area."

Funding for the study came from the National Institute of Child Health and Human Development.

About The George Washington University Medical Center

The George Washington University Medical Center is an internationally recognized interdisciplinary academic health center that has conducted scientific research and provided high-quality medical care in the Washington, D.C., metropolitan area since 1824. For more information about the GW Medical Center, visit: www.gwumc.edu

Anne Banner | EurekAlert!
Further information:
http://www.gwumc.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>