Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells crucial to diabetes cure in mice

17.03.2009
More than five years ago, Dr. Lawrence C.B. Chan and colleagues in his Baylor College of Medicine laboratory cured mice with type 1 diabetes by using a gene to induce liver cells to make insulin.

"Now we know how it works," said Chan, director of the federally designed Diabetes and Endocrinology Research Center at BCM and chief of the division of endocrinology in BCM's department of medicine. "The answer is adult stem cells."

A gene called neurogenin3 proved critical to inducing cells in the liver to produce insulin on a continuing basis, said Chan and Dr. Vijay Yechoor, assistant professor of medicine-endocrinology and first author of the report that appears in the current issue of the journal Developmental Cell. The research team used a disarmed virus called a vector to deliver the gene to the livers of diabetic mice by a procedure commonly known as gene therapy.

"The mice responded within a week," said Yechoor. The levels of sugar in their blood plummeted to normal and stayed that way for the rest of their normal lives.

The quick response generated more questions as did the length of time that the animals stayed healthy.

They found that there was a two-step response. At first, the neurogenin3 gene goes into the mature liver cells and causes them to make small quantities of insulin – enough to drop sugar levels to normal, said Yechoor.

"This is a transient effect," he said. "Liver cells lose the capacity to make insulin after about six weeks."

However, they found that other cells that made larger quantities of insulin showed up later, clustered around the portal veins (blood vessels that carry blood from the intestines and abdominal organs to the liver).

"They look similar to normal pancreatic islet cells (that make insulin normally)," said Yechoor.

They found that these "islet" cells came from a small population of adult stem cells usually found near the portal vein. Only a few are needed usually because they serve as a safety net in case of liver injury. When that occurs, they quickly activate to form mature liver cells or bile duct cells.

However, neurogenin3 changes their fates, directing them down a path to becoming insulin-producing islet cells located in the liver. The mature liver cell cannot make this change because its fate appears to be fixed before exposure to neurogenin3.

The islet cells in the liver look similar to those made by pancreas after an injury, said Yechoor.

"If we didn't use neurogenin3, none of this would happen," he said. "Neurogenin3 is necessary and sufficient to produce these changes."

Chan cautioned that much more work is needed before similar results could be seen in humans. The gene therapy they undertook in the animals used a disarmed viral vector that could still have substantial toxic effects in humans.

"The concept is important because we can induce normal adult stem cells to acquire a new cell fate. It might even be applicable to regenerating other organs or tissues using a different gene from other types of adult stem cells," he said.

Finding a way to use the treatment in human sounds easier than it is, he said. The environment in which cells grow appears to be an important part of the cell fate determination.

However, he and Yechoor plan to continue their work with the eventual goal of providing a workable treatment for people with diabetes.

Dipali Pathak | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>