Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells crucial to diabetes cure in mice

17.03.2009
More than five years ago, Dr. Lawrence C.B. Chan and colleagues in his Baylor College of Medicine laboratory cured mice with type 1 diabetes by using a gene to induce liver cells to make insulin.

"Now we know how it works," said Chan, director of the federally designed Diabetes and Endocrinology Research Center at BCM and chief of the division of endocrinology in BCM's department of medicine. "The answer is adult stem cells."

A gene called neurogenin3 proved critical to inducing cells in the liver to produce insulin on a continuing basis, said Chan and Dr. Vijay Yechoor, assistant professor of medicine-endocrinology and first author of the report that appears in the current issue of the journal Developmental Cell. The research team used a disarmed virus called a vector to deliver the gene to the livers of diabetic mice by a procedure commonly known as gene therapy.

"The mice responded within a week," said Yechoor. The levels of sugar in their blood plummeted to normal and stayed that way for the rest of their normal lives.

The quick response generated more questions as did the length of time that the animals stayed healthy.

They found that there was a two-step response. At first, the neurogenin3 gene goes into the mature liver cells and causes them to make small quantities of insulin – enough to drop sugar levels to normal, said Yechoor.

"This is a transient effect," he said. "Liver cells lose the capacity to make insulin after about six weeks."

However, they found that other cells that made larger quantities of insulin showed up later, clustered around the portal veins (blood vessels that carry blood from the intestines and abdominal organs to the liver).

"They look similar to normal pancreatic islet cells (that make insulin normally)," said Yechoor.

They found that these "islet" cells came from a small population of adult stem cells usually found near the portal vein. Only a few are needed usually because they serve as a safety net in case of liver injury. When that occurs, they quickly activate to form mature liver cells or bile duct cells.

However, neurogenin3 changes their fates, directing them down a path to becoming insulin-producing islet cells located in the liver. The mature liver cell cannot make this change because its fate appears to be fixed before exposure to neurogenin3.

The islet cells in the liver look similar to those made by pancreas after an injury, said Yechoor.

"If we didn't use neurogenin3, none of this would happen," he said. "Neurogenin3 is necessary and sufficient to produce these changes."

Chan cautioned that much more work is needed before similar results could be seen in humans. The gene therapy they undertook in the animals used a disarmed viral vector that could still have substantial toxic effects in humans.

"The concept is important because we can induce normal adult stem cells to acquire a new cell fate. It might even be applicable to regenerating other organs or tissues using a different gene from other types of adult stem cells," he said.

Finding a way to use the treatment in human sounds easier than it is, he said. The environment in which cells grow appears to be an important part of the cell fate determination.

However, he and Yechoor plan to continue their work with the eventual goal of providing a workable treatment for people with diabetes.

Dipali Pathak | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>