Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy makes cloudy corneas clear

14.04.2009
Stem cells collected from human corneas restore transparency and don't trigger a rejection response when injected into eyes that are scarred and hazy, according to experiments conducted in mice by researchers at the University of Pittsburgh School of Medicine. Their study will be published in the journal Stem Cells and appears online today.

The findings suggest that cell-based therapies might be an effective way to treat human corneal blindness and vision impairment due to the scarring that occurs after infection, trauma and other common eye problems, said senior investigator James L. Funderburgh, Ph.D., associate professor, Department of Ophthalmology. The Pitt corneal stem cells were able to remodel scar-like tissue back to normal.

"Our experiments indicate that after stem cell treatment, mouse eyes that initially had corneal defects looked no different than mouse eyes that had never been damaged," Dr. Funderburgh said.

The ability to grow millions of the cells in the lab could make it possible to create an off-the-shelf product, which would be especially useful in countries that have limited medical and surgical resources but a great burden of eye disease due to infections and trauma.

"Corneal scars are permanent, so the best available solution is corneal transplant," Dr. Funderburgh said. "Transplants have a high success rate, but they don't last forever. The current popularity of LASIK corrective eye surgery is expected to substantially reduce the availability of donor tissue because the procedure alters the cornea in a way that makes it unsuitable for transplantation."

A few years ago, Dr. Funderburgh and other University of Pittsburgh researchers identified stem cells in a layer of the cornea called the stroma, and they recently showed that even after many rounds of expansion in the lab, these cells continued to produce the biochemical components, or matrix, of the cornea. One such protein is called lumican, which plays a critical role in giving the cornea the correct structure to make it transparent.

Mice that lack the ability to produce lumican develop opaque areas of their corneas comparable to the scar tissue that human eyes form in response to trauma and inflammation, Dr. Funderburgh said. But three months after the lumican-deficient mouse eyes were injected with human adult corneal stem cells, transparency was restored.

The cornea and its stromal stem cells themselves appear to be "immune privileged," meaning they don't trigger a significant immune response even when transplanted across species, as in the Pitt experiments.

"Several kinds of experiments indicated that the human cells were alive and making lumican, and that the tissue had rebuilt properly," Dr. Funderburgh noted.

In the next steps, the researchers intend to use the stem cells to treat lab animals that have corneal scars to see if they, too, can be repaired with stem cells. Under the auspices of UPMC Eye Center's recently established Center for Vision Restoration, they plan also to develop the necessary protocols to enable clinical testing of the cells.

Other authors of the paper include Yiqin Du, M.D., Ph.D., and Martha L. Funderburgh, M.S.P.H., both of the University of Pittsburgh; Eric C. Carlson, Ph.D., and Eric Pearlman, Ph.D., both of Case Western Reserve University; David E. Birk, Ph.D., of the University of South Florida; Naxin Guo, M.D., Ph.D., of the University of Rochester; and Winston W-Y Kao, Ph.D., of the University of Cincinnati.

The research was supported by grants from the National Institutes of Health, the Eye and Ear Foundation (Pittsburgh), and an unrestricted grant from Research to Prevent Blindness, N.Y. Dr. Funderburgh holds the Jules and Doris Stein Professorship from Research to Prevent Blindness.

The University of Pittsburgh School of Medicine is one of the nation's leading medical schools, renowned for its curriculum that emphasizes both the science and humanity of medicine and its remarkable growth in National Institutes of Health (NIH) grant support, which has more than doubled since 1998. For fiscal year 2007, the University ranked sixth out of more than 3,000 entities receiving NIH support with respect to the research grants awarded to its faculty. As one of the university's six Schools of the Health Sciences, the School of Medicine is the academic partner to the University of Pittsburgh Medical Center (UPMC). Their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care.

Anita Srikameswaran | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>