Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell therapy - a future treatment for lower back pain?

29.11.2010
Lower back pain affects many people and may be caused by degeneration of the discs between the vertebrae. Treatment for the condition using stem cells may be an alternative to today's surgical procedures. This is the conclusion of a thesis presented at the University of Gothenburg, Sweden.

The cells in a degenerated intervertebral disc (which are mainly made of cartilage) no longer work normally. This leads to the disc drying out, which impairs its function and leads to lower back pain.
"It is generally believed that cartilage has no, or very little, capacity to heal, and knowledge about how cell division takes place in intervertebral discs is limited", says scientist Helena Barreto-Henriksson of the Institute of Clinical Sciences and the Institute of Biomedicine at the Sahlgrenska Academy.

The thesis describes how the scientists have studied cell division in the disc, and the possibility of influencing the disc through cell transplantation. In animal studies and in studies of human discs removed during surgery, they have identified areas in the periphery of the disc in which the cells have properties similar to those of stem cells. The cells probably contribute to the growth of new cells, and provide the disc with a certain capacity to self-heal.

The scientists have also investigated the possibility of transplanting cells to a disc by injecting human stem cells into damaged discs in an animal model. 
"Images taken by MRI showed that the transplanted stem cells survived, that they developed into cells that had a function similar to that of disc cells, and that there was a certain degree of healing in the disc", says Helena Barreto-Henriksson.

The results will stimulate further studies about whether it is possible to restore an intervertebral disc, or prevent its further degeneration, using biological treatments. One possible strategy is to stimulate the existing stem cells in the neighbourhood, while another is to develop methods for cell transplantation in patients, using the patient's own stem cells from the bone marrow.
"The advantage of such treatment over today's surgical approaches is that it would be a much simpler and less serious procedure for the patient", points out Helena Barreto-Henriksson.

DISC DEGENERATION
Disc degeneration is a change in the properties of intervertebral discs (which are mainly made of cartilage) that leads to the risk of them becoming too thin. The condition is common among older people and may lead to the displacement of a vertebra and contribute to a constriction in the spinal cord, known as spinal stenosis. It may also arise in younger people and in the middle-aged, and is then considered to be a significant underlying cause of severe and chronic lower back pain.

Title of the thesis: Intervertebral disc regeneration. Studies on stem cell niches and cell transplantation

For more information, please contact: 
Helena Barreto-Henriksson, PhD student at the Department of Orthopaedics, Sahlgrenska Academy
Tel.: +46 (0)31 342 77 07
E-mail: helena.barreto.henriksson@gu.se
Published in: Cells Tissues and Organs. 2010; 191(1): 2-11
Title: Human disc cells from degenerated discs and mesenchymal stem cells in co-culture result in increased matrix production

Authors: Svanvik T, Henriksson HB, Karlsson C, Hagman M, Lindahl A, Brisby H.

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=19494482

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>