Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell switch on the move

01.06.2015

Biologists from the University of Freiburg demonstrate how signals in plant roots determine the activity of stem cells

The roots of a plant are constantly growing, so that they can provide the plant with water and minerals while also giving it a firm anchor in the ground. Responsible for these functions are pluripotent stem cells.


Where the concentration of WOX5 is high enough, the stem cell niche is able to maintain pluripotent stem cells. Where the concentration of WOX5 is too low, the concentration of CDF4 rises and the cells differentiate into root tissue.

Credit: Photograph by Working Group Laux

In order to avoid differentiation and to remain pluripotent, these stem cells are dependent on signals from their neighbouring cells. These signals are generated by only a small group of slowly dividing cells in the so-called quiescent centre inside the root.

An international consortium under the leadership of Prof. Dr. Thomas Laux, a biologist from the University of Freiburg, has identified the transcription factor WUSCHEL HOMEOBOX (WOX) 5 as the signal molecule, showing that it moves through pores from the cells inside the quiescent centre into the stem cells. The team of researchers has published their findings in the professional journal Developmental Cell.

'Solving the mechanism by which signals within the root control stem cell activity has implications for the general workings of the stem cell regulation in plants and humans,' Laux said. He also explained that this will allow scientists to study how plant growth adjusts to different environmental conditions, adding that, 'this is a fascinating field of research in the era of climate change.'

Of all the cells in plants and animals, pluripotent stem cells are the most multi-functional. When they divide, they produce two types of daughter cells: some become new stem cells, while others differentiate to replace tissue or form new organs. To maintain its stem cells, the organism generates the signals that block differentiation inside special stem cell niches. These niches are the only place where stem cells can exist. For blood stem cells, for example, the stem cells reside in the bone marrow.

Laux's group of researchers had previously discovered the transcription factor WOX5, which is necessary for generating signals, in the cells of the root's quiescent centre. However, what its precise role is has remained unclear until now. Laux's team studied the stem cells in the model organism of the Arabidopsis plant, or rock cress, which is part of the Brassicaceae family of plants, including mustard and cabbage.

Studies have already shown, however, that many of these findings also apply to crops such as rice. When the signal WOX5 enters the stem cells through pores, it binds at specific DNA sequences, the promoters, of target genes and recruits an enzyme via a so-called adaptor protein. This enzyme changes the DNA's protein shell, the chromatin, causing the respective gene to be no longer effectively readable.

But why does WOX5 switch off its target gene CDF4 in stem cells? Laux's team of researchers has shown that the CDF4's function is to initiate the differentiation of the stem cell's daughter cells. If the concentration of the CDF4 protein would be too high in the stem cells, then the stem cells would also be forced to differentiate and the plant would have to stop root growth.

Where the concentration of WOX5 is high enough, the stem cell niche is able to maintain the pluripotent stem cells. Where the concentration of WOX5 is low, the concentration of CDF4 rises and the cells differentiate into root tissue. This balance is the secret to the life-long activity of a stem cell niche.

###

Laux is the head of a laboratory at the Institute of Biology III and a member of the cluster of excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg.

Contact:
Dr. Thomas Laux
laux@biologie.uni-freiburg.de
49-761-203-2943
University of Freiburg

Katrin Albaum | EurekAlert!

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>