Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stem cell study in mice offers hope for treating heart attack patients

UCSF study identifies possible way to minimize heart damage

A UCSF stem cell study conducted in mice suggests a novel strategy for treating damaged cardiac tissue in patients following a heart attack.

Cardiac stem cells, pictured here, give hope to patients who have suffered a heart attack. Credit: UCSF

The approach potentially could improve cardiac function, minimize scar size, lead to the development of new blood vessels – and avoid the risk of tissue rejection.

In the investigation, reported online in the journal PLoS ONE, ( the researchers isolated and characterized a novel type of cardiac stem cell from the heart tissue of middle-aged mice following a heart attack.

Then, in one experiment, they placed the cells in the culture dish and showed they had the ability to differentiate into cardiomyocytes, or "beating heart cells," as well as endothelial cells and smooth muscle cells, all of which make up the heart.

In another, they made copies, or "clones," of the cells and engrafted them in the tissue of other mice of the same genetic background who also had experienced heart attacks. The cells induced angiogenesis, or blood vessel growth, or differentiated, or specialized, into endothelial and smooth muscle cells, improving cardiac function.

"These findings are very exciting," said first author Jianqin Ye, PhD, MD, senior scientist at UCSF's Translational Cardiac Stem Cell Program. First, "we showed that we can isolate these cells from the heart of middle-aged animals, even after a heart attack." Second, he said, "we determined that we can return these cells to the animals to induce repair."

Importantly, the stem cells were identified and isolated in all four chambers of the heart, potentially making it possible to isolate them from patients' hearts by doing right ventricular biopsies, said Ye. This procedure is "the safest way of obtaining cells from the heart of live patients, and is relatively easy to perform," he said.

"The finding extends the current knowledge in the field of native cardiac progenitor cell therapy," said senior author Yerem Yeghiazarians, MD, director of UCSF's Translational Cardiac Stem Cell Program and an associate professor at the UCSF Division of Cardiology. "Most of the previous research has focused on a different subset of cardiac progenitor cells. These novel cardiac precursor cells appear to have great therapeutic potential."

The hope, he said, is that patients who have severe heart failure after a heart attack or have cardiomyopathy would be able to be treated with their own cardiac stem cells to improve the overall health and function of the heart. Because the cells would have come from the patients, themselves, there would be no concern of cell rejection after therapy.

The cells, known as Sca-1+ stem enriched in Islet (Isl-1) expressing cardiac precursors, play a major role in cardiac development. Until now, most of the research has focused on a different subset of cardiac progenitor, or early stage, cells known as, c-kit cells.

The Sca-1+ cells, like the c-kit cells, are located within a larger clump of cells called cardiospheres.

The UCSF researchers used special culture techniques and isolated Sca-1+ cells enriched in the Isl-1expressing cells, which are believed to be instrumental in the heart's development. Since Isl-1 is expressed in the cell nucleus, it has been difficult to isolate them but the new technique enriches for this cell population.

The findings suggest a potential treatment strategy, said Yeghiazarians. "Heart disease, including heart attack and heart failure, is the number one killer in advanced countries. It would be a huge advance if we could decrease repeat hospitalizations, improve the quality of life and increase survival." More studies are being planned to address these issues in the future.

An estimated 785,000 Americans will have a new heart attack this year, and 470,000 who will have a recurrent attack. Heart disease remains the number one killer in the United States, accounting for one out of every three deaths, according to the American Heart Association.

Medical costs of cardiovascular disease are projected to triple from $272.5 billion to $818.1 billion between now and 2030, according to a report published in the journal Circulation.

First author Ye, Henry Shih, Richard E. Sievers, Yan Zhang, and Megha Prasad are with the UCSF Division of Cardiology; Yeghiazarians and Andrew Boyle are with the UCSF Division of Cardiology and the UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; William Grossman is with the UCSF Division of Cardiology and the UCSF Cardiovascular Research Institute; Harold S. Bernstein is with the UCSF Cardiovascular Research Institute, the UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and the UCSF Department of Pediatrics; Hua Su is with UCSF Department of Anesthesia and Perioperative Care; and Yan Zhou with the UCSF Department of Cell and Tissue Biology.

The study was supported by funds from the Wayne and Gladys Valley Foundation, the UCSF Cardiac Stem Cell Fund and the Harold Castle Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.


Stem Cell Study in Mice Offers Hope for Treating Heart Attack Patients

Follow UCSF | | |

Leland Kim | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>