Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem-cell sentry sounds the alarm to maintain balance between cancer and aging

16.10.2008
Like a sentry guarding the castle walls, a molecular messenger inside adult stem cells sounds the alarm when it senses hazards that could allow the invasion of an insidious enemy: Cancer.

The alarm bell halts the process of cell division in its tracks, preventing an error that could lead to runaway cell division and eventually, tumor formation.

"Our work suggests that to be able to prevent abnormal cell proliferation, which could lead to cancer, stem cells developed this self-checking system, what we're calling a checkpoint," said Yukiko Yamashita of the University of Michigan's Life Sciences Institute.

"And if it looks like the cell is going to divide in the wrong way, the checkpoint senses there's a problem and sends the signal: 'Don't divide! Don't divide!'" said Yamashita, a research assistant professor of life sciences and an assistant professor of cell and developmental biology at the U-M Medical School.

If everything looks OK, the checkpoint allows adult stem-cell division to proceed, providing new cells to replace damaged and worn-out tissues.

Yamashita and her colleagues have not yet identified the molecules that form the checkpoint mechanism. But they've seen it at work in adult stem cells of the fruit-fly testes, so-called germ-line stem cells.

"Aging is too few divisions and cancer is too many divisions, and people have long speculated that some process controls the balance between them," Yamashita said. "We may have found the mechanism that maintains the delicate balance between over-proliferation---which can lead to cancer---and aging."

The team's findings will be published Oct. 15 in the online version of the journal Nature.

If humans possess a similar checkpoint system and if researchers could someday harness it, they could fine-tune the rate of cellular division to control tumor development as well as tissue aging. But Yamashita stressed that no mammal studies of the checkpoint have been undertaken, so talk of potential human applications is highly speculative.

In fruit flies, the checkpoint monitors germ-line stem cells as they're about to divide. It can sense problems that would derail the division process, which is called mitosis.

Under normal conditions, adult stem-cell division creates one new stem cell and one cell committed to develop into a specific tissue type – such as a skin cell, a blood cell or, in this case, a sperm cell. That form of mitosis is called asymmetric division, and it's exactly what stem cells need to maintain a healthy balance between uncommitted and committed cells.

Cell division is controlled in part by the location of a pair of cellular components called centrosomes. They provide the framework that helps direct how chromosomes are distributed between daughter cells during mitosis.

Normally, centrosomes in a dividing stem cell remain perpendicular to an adjoining messenger cell called the hub. Yamashita and her colleagues found that improper orientation of the centrosomes disrupts the mitotic machinery, steering it on a course toward stem-cell over-proliferation and cancer.

The checkpoint mechanism senses when centrosomes are misaligned, then sounds the alarm that stops cell division.

By preventing faulty cell division, the checkpoint helps ward off cancer. But a balance must be struck: If the checkpoint mechanism slows cell division to a trickle, the resulting shortage of new cells will accelerate tissue aging.

"It's a double-edged sword, and both outcomes are bad," she said. "One path leads to cancer and the other leads to aging. And we haven't found a way to avoid aging without getting cancer."

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Aging Alarm Balance Cancer Lead Stem Stem-cell Yamashita centrosomes checkpoint divide fruit flies maintain mechanism sense sounds stem cells tumor formation

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>