Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem-cell sentry sounds the alarm to maintain balance between cancer and aging

16.10.2008
Like a sentry guarding the castle walls, a molecular messenger inside adult stem cells sounds the alarm when it senses hazards that could allow the invasion of an insidious enemy: Cancer.

The alarm bell halts the process of cell division in its tracks, preventing an error that could lead to runaway cell division and eventually, tumor formation.

"Our work suggests that to be able to prevent abnormal cell proliferation, which could lead to cancer, stem cells developed this self-checking system, what we're calling a checkpoint," said Yukiko Yamashita of the University of Michigan's Life Sciences Institute.

"And if it looks like the cell is going to divide in the wrong way, the checkpoint senses there's a problem and sends the signal: 'Don't divide! Don't divide!'" said Yamashita, a research assistant professor of life sciences and an assistant professor of cell and developmental biology at the U-M Medical School.

If everything looks OK, the checkpoint allows adult stem-cell division to proceed, providing new cells to replace damaged and worn-out tissues.

Yamashita and her colleagues have not yet identified the molecules that form the checkpoint mechanism. But they've seen it at work in adult stem cells of the fruit-fly testes, so-called germ-line stem cells.

"Aging is too few divisions and cancer is too many divisions, and people have long speculated that some process controls the balance between them," Yamashita said. "We may have found the mechanism that maintains the delicate balance between over-proliferation---which can lead to cancer---and aging."

The team's findings will be published Oct. 15 in the online version of the journal Nature.

If humans possess a similar checkpoint system and if researchers could someday harness it, they could fine-tune the rate of cellular division to control tumor development as well as tissue aging. But Yamashita stressed that no mammal studies of the checkpoint have been undertaken, so talk of potential human applications is highly speculative.

In fruit flies, the checkpoint monitors germ-line stem cells as they're about to divide. It can sense problems that would derail the division process, which is called mitosis.

Under normal conditions, adult stem-cell division creates one new stem cell and one cell committed to develop into a specific tissue type – such as a skin cell, a blood cell or, in this case, a sperm cell. That form of mitosis is called asymmetric division, and it's exactly what stem cells need to maintain a healthy balance between uncommitted and committed cells.

Cell division is controlled in part by the location of a pair of cellular components called centrosomes. They provide the framework that helps direct how chromosomes are distributed between daughter cells during mitosis.

Normally, centrosomes in a dividing stem cell remain perpendicular to an adjoining messenger cell called the hub. Yamashita and her colleagues found that improper orientation of the centrosomes disrupts the mitotic machinery, steering it on a course toward stem-cell over-proliferation and cancer.

The checkpoint mechanism senses when centrosomes are misaligned, then sounds the alarm that stops cell division.

By preventing faulty cell division, the checkpoint helps ward off cancer. But a balance must be struck: If the checkpoint mechanism slows cell division to a trickle, the resulting shortage of new cells will accelerate tissue aging.

"It's a double-edged sword, and both outcomes are bad," she said. "One path leads to cancer and the other leads to aging. And we haven't found a way to avoid aging without getting cancer."

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: Aging Alarm Balance Cancer Lead Stem Stem-cell Yamashita centrosomes checkpoint divide fruit flies maintain mechanism sense sounds stem cells tumor formation

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>