Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell scientists discover potential way to expand cells for use with patients

09.11.2012
Canadian and Italian stem cell researchers have discovered a new "master control gene" for human blood stem cells and found that manipulating its levels could potentially create a way to expand these cells for clinical use.

The findings, published today online ahead of print in Cell Stem Cell, usher in a new paradigm for the regulation of human blood stem cells, says co-principal investigator Dr. John Dick, who holds a Canada Research Chair in Stem Cell Biology and is a Senior Scientist at University Health Network's McEwen Centre for Regenerative Medicine and Ontario Cancer Institute (OCI), the research arm of the Princess Margaret Cancer Centre. He is also a Professor in the Department of Molecular Genetics, University of Toronto.

"For the first time in human blood stem cells, we have established that a new class of non-coding RNA called miRNA represents a new tactic for manipulating these cells, which opens the door to expanding them for therapeutic uses," says Dr. Dick.

In 2011, Dr. Dick isolated a human blood stem cell in its purest form – as a single stem cell capable of regenerating the entire blood system – paving the way for clinical uses. He also pioneered the cancer stem cell field by identifying leukemia stem cells in 1994 and colon cancer stem cells in 2007.

OCI lead author Dr. Eric Lechman says the research team removed a master control gene – microRNA 126 (miR-126) – that normally governs the expression of hundreds of other genes by keeping them silenced, which in turn keeps the stem cells in a non-dividing dormant state. The method was to introduce excess numbers of miR-126 binding sites into the stem cells by using a specially designed viral vector.

"The virus acted like a sponge and mopped up the specific miRNA in the cells. This enabled the expression of normally repressed genes to become prominent, after which we observed a long-term expansion of the blood stem cells without exhaustion or malignant transformation," says Dr. Lechman.

Adds Dr. Dick: "We've shown that if you remove the miRNA you can expand the stem cells while keeping their identity intact. That's the key to long-term stem cell expansion for use with patients." The co-principal investigator was Dr. Luigi Naldini, Director, of the San Raffaele Telethon Institute for Gene Therapy, Milan.

Dr. Dick's research was funded by the Canadian Institutes of Health Research, the Canadian Cancer Society, the Terry Fox Foundation, Genome Canada through the Ontario Genomics Institute, the Ontario Institute for Cancer Research, the Canada Research Chair Program, the Ontario Ministry of Health and Long-Term Care, the Canada Foundation of Innovation, as well as The Princess Margaret Cancer Foundation.

About Princess Margaret Cancer Centre, University Health Network

Princess Margaret Cancer Centre and its research arm, Ontario Cancer Institute, have achieved an international reputation as global leaders in the fight against cancer and delivering personalized cancer medicine. The Princess Margaret, one of the top five international cancer research centres, is a member of the University Health Network, which also includes Toronto General Hospital, Toronto Western Hospital and Toronto Rehabilitation Institute. All are research hospitals affiliated with the University of Toronto. For more information, go to www.theprincessmargaret.ca or www.uhn.ca .

Jane Finlayson | EurekAlert!
Further information:
http://www.uhn.ca

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>