Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell scientists discover potential way to expand cells for use with patients

09.11.2012
Canadian and Italian stem cell researchers have discovered a new "master control gene" for human blood stem cells and found that manipulating its levels could potentially create a way to expand these cells for clinical use.

The findings, published today online ahead of print in Cell Stem Cell, usher in a new paradigm for the regulation of human blood stem cells, says co-principal investigator Dr. John Dick, who holds a Canada Research Chair in Stem Cell Biology and is a Senior Scientist at University Health Network's McEwen Centre for Regenerative Medicine and Ontario Cancer Institute (OCI), the research arm of the Princess Margaret Cancer Centre. He is also a Professor in the Department of Molecular Genetics, University of Toronto.

"For the first time in human blood stem cells, we have established that a new class of non-coding RNA called miRNA represents a new tactic for manipulating these cells, which opens the door to expanding them for therapeutic uses," says Dr. Dick.

In 2011, Dr. Dick isolated a human blood stem cell in its purest form – as a single stem cell capable of regenerating the entire blood system – paving the way for clinical uses. He also pioneered the cancer stem cell field by identifying leukemia stem cells in 1994 and colon cancer stem cells in 2007.

OCI lead author Dr. Eric Lechman says the research team removed a master control gene – microRNA 126 (miR-126) – that normally governs the expression of hundreds of other genes by keeping them silenced, which in turn keeps the stem cells in a non-dividing dormant state. The method was to introduce excess numbers of miR-126 binding sites into the stem cells by using a specially designed viral vector.

"The virus acted like a sponge and mopped up the specific miRNA in the cells. This enabled the expression of normally repressed genes to become prominent, after which we observed a long-term expansion of the blood stem cells without exhaustion or malignant transformation," says Dr. Lechman.

Adds Dr. Dick: "We've shown that if you remove the miRNA you can expand the stem cells while keeping their identity intact. That's the key to long-term stem cell expansion for use with patients." The co-principal investigator was Dr. Luigi Naldini, Director, of the San Raffaele Telethon Institute for Gene Therapy, Milan.

Dr. Dick's research was funded by the Canadian Institutes of Health Research, the Canadian Cancer Society, the Terry Fox Foundation, Genome Canada through the Ontario Genomics Institute, the Ontario Institute for Cancer Research, the Canada Research Chair Program, the Ontario Ministry of Health and Long-Term Care, the Canada Foundation of Innovation, as well as The Princess Margaret Cancer Foundation.

About Princess Margaret Cancer Centre, University Health Network

Princess Margaret Cancer Centre and its research arm, Ontario Cancer Institute, have achieved an international reputation as global leaders in the fight against cancer and delivering personalized cancer medicine. The Princess Margaret, one of the top five international cancer research centres, is a member of the University Health Network, which also includes Toronto General Hospital, Toronto Western Hospital and Toronto Rehabilitation Institute. All are research hospitals affiliated with the University of Toronto. For more information, go to www.theprincessmargaret.ca or www.uhn.ca .

Jane Finlayson | EurekAlert!
Further information:
http://www.uhn.ca

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>