Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem Cell Researchers Uncover Reason Why the Adult Human Heart Cannot Regenerate Itself

10.08.2011
Stem cell researchers at UCLA have uncovered for the first time why adult human cardiac myocytes have lost their ability to proliferate, perhaps explaining why the human heart has little regenerative capacity.

The study, done in cell lines and mice, may lead to methods of reprogramming a patient’s own cardiac myocytes within the heart itself to create new muscle to repair damage, said Dr. Robb MacLellan, a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA and senior author of the study.

Unlike newts and salamanders, human adults cannot spontaneously regrow damaged organs such as the heart. However, recent research suggests that mammals do have the ability to regenerate the heart for a very brief period, about the first week of life. But that ability is quickly lost. But if we had it once, MacLellan said, maybe it is possible to regain that ability.

Published in the Aug. 8 issue of the peer-reviewed Journal of Cell Biology, MacLellan’s study suggests it might be possible to turn back the cellular clock to a time when cardiac myocytes had the ability to proliferate and re-grow heart muscle.

“These salamanders and other lower organisms have the ability to de-differentiate cardiac myocytes, or take them back to an earlier, more primitive state, which allows them to re-enter the cell cycle, creating new heart muscle,” said MacLellan, who also is an associate professor of cardiology and physiology. “In mammals, we’ve lost that potential. If we knew how to restore that, or knew the reason why adult myocytes can’t do it, we could try to figure out a way to use nature’s methods to regenerate the heart.”

During human development, cardiac myocytes are made by progenitor stem cells and proliferate to form the heart. Once the heart is formed, the myocytes transform from immature cells into mature cells that cannot proliferate. That’s not so for newts and salamanders, whose cardiac myocytes can go back and forth between immature, or primitive, states to proliferate and repair damage and then revert back into mature cells once the damage is repaired.

MacLellan believes the reason adult human cardiac myocytes can’t do this is quite simple – when the myocytes are in a more primitive state, they are not as good at contracting, which is vital for proper heart function. Because humans are much larger than newts and salamanders, we needed more heart contraction to maintain optimum blood pressure and circulation.

“The way we evolved, in order to maintain blood pressure and flow we had to give up the ability to regenerate the heart muscle,” MacLellan said. “The up side is we got more efficient cardiac myocytes and better hearts. But it was a trade-off.”

MacLellan said that by temporarily knocking down the proteins that block the cell cycle mechanism, it may be possible to get adult cardiac myocytes to re-enter the cell cycle and revert to a state where they can again proliferate. These therapies would need to be reversible so that the effects of the protein manipulation eventually wear off once the damage is repaired. Then myocytes would become mature again and aid in contracting the regenerated heart muscle. MacLellan currently is looking into using nanoparticles to deliver small interfering RNA to the heart to knock out the proteins that are keeping the myocytes mature.

When a heart attack occurs, oxygen is cut off to part of the heart, causing the cardiac myocytes to die and resulting in scar tissue. It’s easy to locate the damaged area of the heart, and if a way could be developed to reprogram a patient’s own myocytes, the protein manipulation system could be injected into the damaged area, reverting the myocytes to their primitive state and replacing the dead muscle with new, living muscle, MacLellan said.

“People have been talking about the regenerative potential of these lower organisms for a long time and why this does not occur in humans” MacLellan said. “This is the first paper that provided a rationale and mechanism for why this happens.”

There has been much talk of using human embryonic stem cells or reprogrammed induced pluripotent stem cells to regenerate the heart. However, it’s unknown how much regeneration is possible and how much benefit would come from it.

“From my point of view, this is a potential mechanism to regenerate heart muscle without having to harvest or expand stem cells,” MacLellan said. “Each person would be their own source for cells for regeneration.”

The five-year study was funded by the National Institutes of Health.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA’s Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.ucla.edu
http://www.stemcell.ucla.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>