Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell researchers map new knowledge about insulin production

26.04.2012
Scientists from The Danish Stem Cell Center (DanStem) at the University of Copenhagen and Hagedorn Research Institute have gained new insight into the signaling paths that control the body’s insulin production.
This is important knowledge with respect to their final goal: the conversion of stem cells into insulin-producing beta cells that can be implanted into patients who need them. The research results have just been published in the well-respected journal PNAS.

Insulin is a hormone produced by beta cells in the pancreas. If these beta cells are defective, the body develops diabetes. Insulin is vital to life and therefore today the people who cannot produce their own in sufficient quantities, or at all, receive carefully measured doses – often via several daily injections. Scientists hope that in the not-so-distant future it will be possible to treat diabetes more effectively and prevent secondary diseases such as cardiac disease, blindness and nerve and kidney complications by offering diabetes patients implants of new, well-functioning, stem-cell-based beta cells.

“In order to get stem cells to develop into insulin-producing beta cells, it is necessary to know what signaling mechanisms normally control the creation of beta cells during fetal development. This is what our new research results can contribute,” explains Professor Palle Serup from DanStem.

“When we know the signaling paths, we can copy them in test tubes and thus in time convert stem cells to beta cells,” says Professor Serup.

The new research results were obtained in a cooperative effort between DanStem, the Danish Hagedorn Research Institute and international partners in Japan, Germany, Korea and the USA. The scientific paper has just been published in the well-respected international journal PNAS (Proceedings of the National Academy of Sciences of the United States of America) entitled Mind bomb 1 is required for pancreatic â-cell formation.

Better control of stem cells

The signaling mechanism that controls the first steps of the development from stem cells to beta cells has long been known.

“Our research contributes knowledge about the next step in development and the signaling involved in the communication between cells – an area that has not been extensively described. This new knowledge about the ability of the so-called Notch signaling first to inhibit and then to stimulate the creation of hormone-producing cells is crucially important to being able to control stem cells better when working with them in test tubes,” explains Professor Palle Serup .

This new knowledge about the characteristics of the Notch signaling mechanism will enable scientists to design new experimental ways to cultivate stem cells so that they can be more effectively converted into insulin-producing beta cells.

Contact:
Professor Palle Serup
Mobile phone: +45 40 22 00 26

Professor Palle Serup | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>