Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell protein offers a new cancer target

03.06.2009
LIN28, which maintains cell 'stemness,' is abundant in advanced cancers and transforms cells to cancerous state

A protein abundant in embryonic stem cells is now shown to be important in cancer, and offers a possible new target for drug development, report researchers from the Stem Cell Program at Children's Hospital Boston.

Last year, George Daley, MD, PhD, and graduate student Srinivas Viswanathan, in collaboration with Richard Gregory, PhD, also of the Stem Cell Program at Children's, showed that the protein LIN28 regulates an important group of tumor-suppressing microRNAs known as let-7.

Increasing LIN28 production in a cell prevented let-7 from maturing, making the cell more immature and stem-like. Since these qualities also make a cell more cancerous, and because low levels of mature let-7 have been associated with breast and lung cancer, the discovery suggested that LIN28 might be oncogenic.

Now, publishing Advance Online in Nature Genetics on May 31, Daley, Viswanathan and colleagues show directly that LIN28 can transform cells to a cancerous state, and that it is abundant in a variety of advanced human cancers, particularly liver cancer, ovarian cancer, chronic myeloid leukemia, germ cell tumors and Wilm's tumor (a childhood kidney cancer). They believe that overall, LIN28 and a related protein, LIN28B, may be involved in some 15 percent of human cancers. By blocking or suppressing LIN28, it might be possible to revive the let-7 family's natural tumor-suppressing action.

"Linking this protein to advanced cancer is a very exciting new result," says Daley, Director of Stem Cell Transplantation at Children's, and also affiliated with Children's Division of Hematology/Oncology, the Dana-Farber Cancer Institute and the Harvard Stem Cell Institute. "It gives us a new target to attack, especially in the most resistant and hard-to-treat cases."

LIN28, which is abundant in embryonic stem cells and prevents them from differentiating into specific cell types, was originally discovered to influence embryonic development in worms some 25 years ago. Development, stem cell generation and carcinogenesis are known to be closely related, but until last year's study connected LIN28 to let-7, it hadn't been clear how.

"LIN28 is a fascinating protein that acts both in stem cells and cancers, and is teaching us that cancer is often a disease of stem cells," says Daley.

Viswanathan, Daley and colleagues are busily searching for ways to inhibit LIN28, which could provide promising new drugs for advanced cancer.

The study was funded by the National Institutes of Health, the NIH Director's Pioneer Award, Burroughs Wellcome Fund, the Leukemia and Lymphoma Society and the Howard Hughes Medical Institute.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 12 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 397-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School.

Elizabeth Andrews | EurekAlert!
Further information:
http://www.harvard.edu
http://www.childrenshospital.org/newsroom

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>