Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell derived neurons for research relevant to Alzheimer's and Niemann-Pick type C diseases

10.12.2009
Early defects in intracellular physical transport system may be driving force behind severe neuronal dysfunction

Stem cell derived neurons may allow scientists to determine whether breakdowns in the transport of proteins, lipids and other materials within cells trigger the neuronal death and neurodegeneration that characterize Alzheimer's disease (AD) and the rarer but always fatal neurological disorder, Niemann-Pick Type C (NPC), according to a presentation that Lawrence B. Goldstein, Ph.D., of the University of California, San Diego, School of Medicine and Howard Hughes Medical Institute (HHMI) will give at the American Society for Cell Biology (ASCB) 49th Annual Meeting, Dec. 5-9, 2009 in San Diego.

In research using fruit flies, mice and human cell cultures as lab models, Goldstein pioneered the study of how early defects in the intracellular physical transport system may be the driving force behind severe neuronal dysfunction.

Using human embryonic stem cells (hESCs), Goldstein and his team have produced human neurons in which the NPC gene is switched off, providing the first close look at cellular transport in a human neuron lacking normal function of the gene.

With induced pluripotent stem cells (IPS), Goldstein has derived human neurons representing the genetic "familial" form of AD as well as the far more common "sporadic" AD.

By comparing the biochemical and cellular makeup of these two types of stem cell derived neurons, Goldstein hopes to reveal how their known genetic differences affect their transport of vital cellular cargoes and other cellular behaviors.

Such research "may yield an understanding of what components of sporadic disease are defined by genetic characteristics," said Goldstein, professor in the Department of Cellular & Molecular Medicine, an HHMI investigator and director of UC San Diego's Stem Cell Program.

AD is now the seventh leading cause of death in the U.S., according to the National Centers for Health Statistics. The National Niemann-Pick Disease Foundation reports that children born with NPC rarely survive beyond the age of 20.

Lawrence S.B. Goldstein, Ph.D. (858-534-9702; lgoldstein@ucsd.edu) will present "Human pluripotent stem cell models of Alzheimer's Disease and Niemann-Pick Type C," at the Wednesday, Dec. 9, 10:15-10:35 a.m. Minisymposium 28: ES Cells, iPS Cells, and Germ Cells, Abstract #2381, Ballroom 20A.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>