Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From stem cell to brain cell – new technique mimics the brain

24.05.2012
A new technique that converts stem cells into brain cells has been developed by researchers at Lund University. The method is simpler, quicker and safer than previous research has shown and opens the doors to a shorter route to clinical cell transplants.

By adding two different molecules, the researchers have discovered a surprisingly simple way of starting the stem cells’ journey to become finished brain cells. The process mimics the brain’s natural development by releasing signals that are part of the normal development process. Experiments in animal models have shown that the cells quickly adapt in the brain and behave like normal brain cells.

“This technique allows us to fine-tune our steering of stem cells to different types of brain cells. Previous studies have not always used the signals that are activated during the brain’s normal development. This has caused the transplanted cells to develop tumours or function poorly in the brain”, says Agnete Kirkeby, one of the authors of the study.

Since the method effectively imitates the brain’s own processes, it reduces the risk of tumour formation, one of the most common obstacles in stem cell research. The quick, simple technique makes the cells mature faster, which both makes the transplant safer and helps the cells integrate better into the brain. The results of the study bring stem cell research closer to transplant trials in the human brain.

“We have used the new protocol to make dopamine neurons, the type of neuron that is affected by Parkinson’s disease, and for the first time, we are seriously talking about these cells as being good enough to move forward for transplantation in patients. The next step is to test the process on a larger scale and to carry out more pre-clinical safety tests”, explains Malin Parmar, research team leader.

The research is presented in the report ‘Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions’ in the journal Cell Reports.

The study has been conducted as part of the EU 7th Framework Programme project NeuroStemcell.

For more information, please contact:
Malin Parmar +46 709 823901, Malin.Parmar@med.lu.se
Agnete Kirkeby +45 5168 5353, Agnete.Kirkeby@med.lu.se

Ingemar Björklund | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>