Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell-based bioartificial tissues and organs

19.02.2013
Pioneering stem cell-based transplant technology is being developed and tested on new organs and tissues

Surgeon Paolo Macchiarini has made his name by successfully transplanting bioengineered stem cell-based trachea, composed of both artificial and biological material.

He now plans to use the technique to recreate more complex tissues, such as the oesophagus and diaphragm or organs such as the heart and lungs. He has also made an experimental attempt to regenerate brain in mice and rats. This is part of the news he will be presenting during his seminar at the scientific AAAS Annual Meeting in Boston.

In June 2011, media all over the world reported about a ground breaking transplant, where a patient received an artificial trachea covered in his own stem cells. The result was an artificial windpipe with biological functions. To date, five operations have been carried out using this technique.

"We learn something from each operation. This means we can develop and refine the technique. We are also evaluating how we can transfer our experiences to other fields, such as neurology. The aim is to make as much use of the body's own healing potential as we can", says Paolo Macchiarini, Professor of Regenerative Surgery at Karolinska Institutet, and responsible for the surgery.

At the AAAS Annual Meeting, he will talk about how he believes the technology can be used in the future. This will include:

The plan to operate on a 2 year-old girl in the USA in March. The girl was born without a trachea and has lived her entire life in intensive care, where she breathes through a tube placed in the oesophagus and connected directly to the lungs. Without a new trachea, she will never be able to leave the hospital. This will be the first time the procedure is conducted on a small child. It is also the first time the procedure will be conducted on an individual without a trachea - as previously, diseased organs have been replaced.

There are also plans to transplant the oesophagus, an organ that is more complex than a trachea as it has muscles.

In experimental trials on rats, the research team has investigated the possibility to replace brain matter that has been damaged by serious trauma sustained from events such as traffic accidents, gunshot wounds or surgery. The aim is to replace the lost brain matter with a cultivated stem cell based substance and in turn, avoid neurological damage. The experimental attempt that has been conducted on rats and mice has shown positive results.

On two occasions, severely injured patients with acute refractory lung failure received stem cell based therapy showing immediate functional improvement. Although both patients died as a consequence of multi-organ failure, the result has provided the first evidence that stem cell therapy can be a promising alternative to restore function in certain damaged organs - without the need for them to be removed and replaced with healthy donor organs.

You are welcome to attend the symposium:

"Stem Cell-Based Bioartificial Tissues and Organs"
Time: Monday 18 February 09:45 am - 11:15 am
Location: Hynes Convention Center, Boston, room 207
http://aaas.confex.com/aaas/2013/webprogram/Session5979.html
Download photos of Paolo Macchiarini http://ki.se/ki/jsp/polopoly.jsp?d=26591&a=69817&l=en or generic video material of educational and research environments at Karolinska Institutet http://ki.se/pressroom.
For further information, please contact:
Sabina Bossi, International media relations officer

Sabina Bossi | EurekAlert!
Further information:
http://www.ki.se

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>