Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steel-Strength Plastics -- and Green, Too!

08.06.2012
TAU researcher develops durable plastic that may replace metals
As landfills overflow with discarded plastics, scientists have been working to produce a biodegradable alternative that will reduce pollution. Now a Tel Aviv University researcher is giving the quest for environmentally friendly plastics an entirely new dimension — by making them tougher than ever before.

Prof. Moshe Kol of TAU's School of Chemistry is developing a super-strength polypropylene — one of the world's most commonly used plastics — that has the potential to replace steel and other materials used in everyday products. This could have a long-term impact on many industries, including car manufacturing, in which plastic parts could replace metallic car parts.

Durable plastics consume less energy during the production process, explains Prof. Kol. And there are additional benefits as well. If polypropylene car parts replaced traditional steel, cars would be lighter overall and consume less fuel, for example. And because the material is cheap, plastic could provide a much more affordable manufacturing alternative.

His research has been published in the journal Angewandte Chemie.

Better building blocks

Although a promising field of research, biodegradable plastics have not yet been able to mimic the durability and resilience of common, non-biodegradable plastics like polypropylene. Prof. Kol believes that the answer could lie in the catalysts, the chemicals that enable their production.

Plastics consist of very long chains called polymers, made of simple building blocks assembled in a repeating pattern. Polymerization catalysts are responsible for connecting these building blocks and create a polymer chain. The better the catalyst, the more orderly and well-defined the chain — leading to a plastic with a higher melting point and greater strength and durability. This is why the catalyst is a crucial part of the plastic production process.

Prof. Kol and his team of researchers have succeeded in developing a new catalyst for the polypropylene production process, ultimately producing the strongest version of the plastic that has been created to date. "Everyone is using the same building blocks, so the key is to use different machinery," he explains. With their catalyst, the researchers have produced the most accurate or "regular" polypropylene ever made, reaching the highest melting point to date.

Using resources more efficiently

By 2020, the consumption of plastics is estimated to reach 200 million tons a year. Prof. Kol says that because traditional plastics aren't considered green, it's important to think creatively to develop this material, which has become a staple of daily life, with the least amount of harm to the environment. Cheaper and more efficient to produce in terms of energy consumption, as well as non-toxic, Prof. Kol's polypropylene is good news for green manufacturing and could revolutionize the industry. The durability of the plastic results in products that require less maintenance — and a much longer life for parts made from the plastic.

Beyond car parts, Prof. Kol envisions a number of uses for this and related plastics, including water pipes, which he says could ultimately conserve water use. Drinking water for the home has been traditionally carried by steel and cement pipes. These pipes are susceptible to leakage, leading to waste and therefore higher water bills. But they are also very heavy, so replacing them can be a major, expensive operation.

"Plastic pipes require far fewer raw materials, weighing ten times less than steel and a hundred times less than cement. Reduced leaking means more efficient water use and better water quality," Prof. Kol explains. The replacement of steel water pipes by those made of plastic is becoming more common, and the production of plastics with even greater strength and durability will make this transition even more environmentally-friendly.

Prof. Kol holds the Bruno Landesberg Chair in Green Chemistry at TAU.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>