Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steel-Strength Plastics -- and Green, Too!

08.06.2012
TAU researcher develops durable plastic that may replace metals
As landfills overflow with discarded plastics, scientists have been working to produce a biodegradable alternative that will reduce pollution. Now a Tel Aviv University researcher is giving the quest for environmentally friendly plastics an entirely new dimension — by making them tougher than ever before.

Prof. Moshe Kol of TAU's School of Chemistry is developing a super-strength polypropylene — one of the world's most commonly used plastics — that has the potential to replace steel and other materials used in everyday products. This could have a long-term impact on many industries, including car manufacturing, in which plastic parts could replace metallic car parts.

Durable plastics consume less energy during the production process, explains Prof. Kol. And there are additional benefits as well. If polypropylene car parts replaced traditional steel, cars would be lighter overall and consume less fuel, for example. And because the material is cheap, plastic could provide a much more affordable manufacturing alternative.

His research has been published in the journal Angewandte Chemie.

Better building blocks

Although a promising field of research, biodegradable plastics have not yet been able to mimic the durability and resilience of common, non-biodegradable plastics like polypropylene. Prof. Kol believes that the answer could lie in the catalysts, the chemicals that enable their production.

Plastics consist of very long chains called polymers, made of simple building blocks assembled in a repeating pattern. Polymerization catalysts are responsible for connecting these building blocks and create a polymer chain. The better the catalyst, the more orderly and well-defined the chain — leading to a plastic with a higher melting point and greater strength and durability. This is why the catalyst is a crucial part of the plastic production process.

Prof. Kol and his team of researchers have succeeded in developing a new catalyst for the polypropylene production process, ultimately producing the strongest version of the plastic that has been created to date. "Everyone is using the same building blocks, so the key is to use different machinery," he explains. With their catalyst, the researchers have produced the most accurate or "regular" polypropylene ever made, reaching the highest melting point to date.

Using resources more efficiently

By 2020, the consumption of plastics is estimated to reach 200 million tons a year. Prof. Kol says that because traditional plastics aren't considered green, it's important to think creatively to develop this material, which has become a staple of daily life, with the least amount of harm to the environment. Cheaper and more efficient to produce in terms of energy consumption, as well as non-toxic, Prof. Kol's polypropylene is good news for green manufacturing and could revolutionize the industry. The durability of the plastic results in products that require less maintenance — and a much longer life for parts made from the plastic.

Beyond car parts, Prof. Kol envisions a number of uses for this and related plastics, including water pipes, which he says could ultimately conserve water use. Drinking water for the home has been traditionally carried by steel and cement pipes. These pipes are susceptible to leakage, leading to waste and therefore higher water bills. But they are also very heavy, so replacing them can be a major, expensive operation.

"Plastic pipes require far fewer raw materials, weighing ten times less than steel and a hundred times less than cement. Reduced leaking means more efficient water use and better water quality," Prof. Kol explains. The replacement of steel water pipes by those made of plastic is becoming more common, and the production of plastics with even greater strength and durability will make this transition even more environmentally-friendly.

Prof. Kol holds the Bruno Landesberg Chair in Green Chemistry at TAU.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>