Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SteamBio enabling sustainable carbon for industry

18.04.2016

To create a more secure and sustainable future we need to use carbon from nature: “biocarbon”; using it to create biodegradable bioplastics, other biochemicals and for renewable energy generation that is available when required. Steambio is a collaboration of eleven partners from industry and academia with a common purpose: to create a viable business based on superheated steam torrefaction of forestry and agricultural residues.

There is much talk nowadays about “decarbonising” the economy, would it be more appropriate for us to use a greener form of carbon instead? Carbon has helped to shape the world we live in today, in fuels and in chemicals.


Superheated steam torrefaction plant

source: SteamBio.eu

In the modern world it is primarily supplied from unsustainable fossil sources; coal mines, oil wells and gas fields, creating environmental impacts in both extraction and use. With the majority of fossil carbon now imported into Europe there are assorted concerns relating to security of supply.

To create a more secure and sustainable future we need to use carbon from nature: “biocarbon”; using it to create biodegradable bioplastics, other biochemicals and for renewable energy generation that is available when required. However,it is important that biocarbon is sustainable with functionalities, availability and costs comparable to the fossil carbon it displaces.

While biocarbon is an abundant natural resource, it is not always available in the appropriate condition or location. The infrastructure associated with fossil carbon has been developed over a number of years, based around centralised refineries.

The biorefineries of the future cannot ignore these existing infrastructures. For biocarbon to become established it must be able to be stabilised, stored, transported and used with cost and functional equivalence to fossil carbon. This needs to be achieved without expensive plant upgrades.

How big is the market ?

The global chemical industry is worth about $3 trillion, of which biochemical production amounts to approximately $100 billion, a relatively small but growing proportion. Currently these biochemicals are mainly 1st generation, which means that they compete with available food supplies, either directly by using corn starch or sugar or indirectly through land use.

This is not sustainable in the long term and has led to research and investment into 2nd and 3rd generation sources. The bioenergy market is more developed and is expanding. Since 2008 EU wood pellet use for energy generation has increased from 2.5 million tons of oil equivalence (Mtoe) and is projected to be 20 to 32 Mtoe or approximately 50 to 80 million metric tons, by 2020 (source: European Biomass Association). As the demand for bioenergy has grown, issues have arisen which will also impact on 2nd generation biochemicals.

Existing forestry resources in Europe are insufficient to meet market demand, resulting in significant imports from North America and other regions with competition for supplies emerging from East Asia and elsewhere. Concerns have been expressed on imported supplies, of ecological stresses where grown, on the environmental impact of shipments around the globe and competition from other users.

There are abundant biomass resources across Europe that are not currently being used to meet this supply gap. For instance, it had been estimated that there are potentially 100 Mtoe of agricultural residues alone. However, these residues are not in a form that can be readily collated and is usable by a large scale bioeconomy. There is a need to be able to cost-effectively collate and present this material in a form that can be used.

Superheated steam torrefaction

Torrefaction is a thermal conditioning process that makes biomass water resistant, with higher calorific values and easier to store and transport, more suited to bioenergy (and biochemical) use than raw biomass. It has been developed by many teams over the years but has yet to fulfil its commercial potential. Superheated steam processing is an energy efficient means of heat transfer.

It has been developed by the German Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB into a continuous industrial drying process that can recover valuable volatiles from the condensate stream. On a pilot scale this process has been used at higher temperatures for torrefaction of assorted biomass material. Feasibility studies have shown that it has potential to stabilise a variety of forestry and agricultural residues in a form that is economically viable.

Taking it to the next level

The next step involves taking this work to market. To make this happen, financial support was approved by the EU Horizon 2020 programme for the project SteamBio. Steambio is a collaboration of eleven partners from industry and academia with a common purpose: to create a viable business based on superheated steam torrefaction of forestry and agricultural residues. It will demonstrate economic viability in different rural locations recovery of usable biocarbon from indigenous forestry and farming residues in tonnage quantities.

In SteamBio this torrefied biocarbon will be demonstrated as a coal replacement for an industrial lime kiln and as a carbon source in pilot scale biorefineries. Recovered condensate from the superheated steam process has already been shown to contain commercially relevant quantities of biochemicals, additional to the torrefied biocarbon mass that can be used as a biofuel and in biochemicals.

SteamBio has already selected six different reference-materials that are abundant and available from European forestry and farming operations. A demonstration unit with a throughput of 500kg/hour is currently under design and construction and will be deployed at different rural locations by January 2017.

For more details on the project, please visit www.steambio.eu 

Weitere Informationen:

http://www.steambio.eu SteamBio project website
http://www.besustainablemagazine.com/cms2/steambio-enabling-sustainable-carbon-f... Original SteamBio Press Release on BE sustainable

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>