Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SteamBio enabling sustainable carbon for industry

18.04.2016

To create a more secure and sustainable future we need to use carbon from nature: “biocarbon”; using it to create biodegradable bioplastics, other biochemicals and for renewable energy generation that is available when required. Steambio is a collaboration of eleven partners from industry and academia with a common purpose: to create a viable business based on superheated steam torrefaction of forestry and agricultural residues.

There is much talk nowadays about “decarbonising” the economy, would it be more appropriate for us to use a greener form of carbon instead? Carbon has helped to shape the world we live in today, in fuels and in chemicals.


Superheated steam torrefaction plant

source: SteamBio.eu

In the modern world it is primarily supplied from unsustainable fossil sources; coal mines, oil wells and gas fields, creating environmental impacts in both extraction and use. With the majority of fossil carbon now imported into Europe there are assorted concerns relating to security of supply.

To create a more secure and sustainable future we need to use carbon from nature: “biocarbon”; using it to create biodegradable bioplastics, other biochemicals and for renewable energy generation that is available when required. However,it is important that biocarbon is sustainable with functionalities, availability and costs comparable to the fossil carbon it displaces.

While biocarbon is an abundant natural resource, it is not always available in the appropriate condition or location. The infrastructure associated with fossil carbon has been developed over a number of years, based around centralised refineries.

The biorefineries of the future cannot ignore these existing infrastructures. For biocarbon to become established it must be able to be stabilised, stored, transported and used with cost and functional equivalence to fossil carbon. This needs to be achieved without expensive plant upgrades.

How big is the market ?

The global chemical industry is worth about $3 trillion, of which biochemical production amounts to approximately $100 billion, a relatively small but growing proportion. Currently these biochemicals are mainly 1st generation, which means that they compete with available food supplies, either directly by using corn starch or sugar or indirectly through land use.

This is not sustainable in the long term and has led to research and investment into 2nd and 3rd generation sources. The bioenergy market is more developed and is expanding. Since 2008 EU wood pellet use for energy generation has increased from 2.5 million tons of oil equivalence (Mtoe) and is projected to be 20 to 32 Mtoe or approximately 50 to 80 million metric tons, by 2020 (source: European Biomass Association). As the demand for bioenergy has grown, issues have arisen which will also impact on 2nd generation biochemicals.

Existing forestry resources in Europe are insufficient to meet market demand, resulting in significant imports from North America and other regions with competition for supplies emerging from East Asia and elsewhere. Concerns have been expressed on imported supplies, of ecological stresses where grown, on the environmental impact of shipments around the globe and competition from other users.

There are abundant biomass resources across Europe that are not currently being used to meet this supply gap. For instance, it had been estimated that there are potentially 100 Mtoe of agricultural residues alone. However, these residues are not in a form that can be readily collated and is usable by a large scale bioeconomy. There is a need to be able to cost-effectively collate and present this material in a form that can be used.

Superheated steam torrefaction

Torrefaction is a thermal conditioning process that makes biomass water resistant, with higher calorific values and easier to store and transport, more suited to bioenergy (and biochemical) use than raw biomass. It has been developed by many teams over the years but has yet to fulfil its commercial potential. Superheated steam processing is an energy efficient means of heat transfer.

It has been developed by the German Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB into a continuous industrial drying process that can recover valuable volatiles from the condensate stream. On a pilot scale this process has been used at higher temperatures for torrefaction of assorted biomass material. Feasibility studies have shown that it has potential to stabilise a variety of forestry and agricultural residues in a form that is economically viable.

Taking it to the next level

The next step involves taking this work to market. To make this happen, financial support was approved by the EU Horizon 2020 programme for the project SteamBio. Steambio is a collaboration of eleven partners from industry and academia with a common purpose: to create a viable business based on superheated steam torrefaction of forestry and agricultural residues. It will demonstrate economic viability in different rural locations recovery of usable biocarbon from indigenous forestry and farming residues in tonnage quantities.

In SteamBio this torrefied biocarbon will be demonstrated as a coal replacement for an industrial lime kiln and as a carbon source in pilot scale biorefineries. Recovered condensate from the superheated steam process has already been shown to contain commercially relevant quantities of biochemicals, additional to the torrefied biocarbon mass that can be used as a biofuel and in biochemicals.

SteamBio has already selected six different reference-materials that are abundant and available from European forestry and farming operations. A demonstration unit with a throughput of 500kg/hour is currently under design and construction and will be deployed at different rural locations by January 2017.

For more details on the project, please visit www.steambio.eu 

Weitere Informationen:

http://www.steambio.eu SteamBio project website
http://www.besustainablemagazine.com/cms2/steambio-enabling-sustainable-carbon-f... Original SteamBio Press Release on BE sustainable

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>