Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stealthy gene network makes brain tumors flourish

16.07.2009
Researchers discover kingpin genes spur growth in most lethal tumor

The brain tumor afflicting Sen. Edward Kennedy – a glioblastoma – is the most aggressive and wily form of brain cancer. It has foiled researchers' decades-long efforts to thwart its explosive growth in the brain.

The lethal tumor – the most common brain tumor in humans -- nimbly alters its genes like a quick-change artist to elude treatments to destroy it.

But scientists from Northwestern University Feinberg School of Medicine have discovered the formidable tumor's soft underbelly. They have identified a network of 31 mutated genes that stealthily work together to create the perfect molecular landscape to allow the tumor to flourish and mushroom to the size of an apple in just a few months.

Northwestern researchers have also identified a new gene, Annexin A7, a vital guard whose job is to halt tumor growth and whose level in the tumor predicts how long a glioblastoma patient will survive. The genetic landscape of glioblastomas eliminates Annexin A7 by wiping out its home base, chromosome 10.

The discoveries help researchers understand the tumor's vulnerabilities and offer new targets for therapies to treat the disease.

"These 31 genes are the kingpins in what you could call an organized crime network of genes that enable the tumor to grow with breathtaking speed," said Markus Bredel, M.D., director of the Northwestern Brain Tumor Institute research program, assistant professor of neurological surgery at the Feinberg School and the principal investigator of the two studies reporting these new findings. "These 31 genes are highly connected to and affect hundreds of other genes involved in this process."

The studies will be published in the July 15 issue of Journal of the American Medical Association.

It was no small task for Bredel to identify the kingpins of the network. Glioblastomas are among the most biologically complex cancers, involving changes in thousands of genes. Leukemia, by contrast, involves changes in just a few genes.

Bredel said the way to identify the key players was to determine which genes had the most connections to other genes in the network. "We don't care about the gangster on the street. We wanted to find the big bosses," Bredel said. "If you knock them out, then you have a big effect on all the other genes in the network."

To accomplish that, Bredel and colleagues looked at the molecular levels and genetic profiles of more than 500 brain tumors of patients from around the country as well as the clinical profiles of the patients. Bredel's first study reports on the 31 key mutated genes he discovered that comprise the tumor's primary network. These genes represent a recurrent pattern of the most important mutations in the tumor.

"If many of those genes were mutated, the more aggressive the tumor and the less time the patient would survive," Bredel said. These are called hub genes because they are at the hub of all the mutated gene interaction.

In the second study, Bredel reports on the interaction of two of the 31 genes that are most frequently and concurrently affected by genetic alterations. One of those genes is EGFR (epidermal growth factor receptor), a well-known player in many cancers and known as an oncogene. EGFR has physiological importance in normal development. In nearly half of the glioblastoma patients, EGFR is mutated and abnormally activated, as if its dial is cranked permanently to "high."

Bredel discovered that the other gene, Annexin A7, is a vital guard whose job is to halt tumor growth by regulating the EGFR gene. Bredel found Annexin A7 was lost or diminished in many of the patients' malignant brain tumors. The reason was its home base -- chromosome 10 -- had been wiped out in about 75% of the tumors.

The study showed the presence and quantity of Annexin A7 in the malignant brain tumor accurately predicts how long a glioblastoma patient will survive. The more Annexin A7, the more restrictions on the tumor growth and the longer the survival. Bredel said the identification of Annexin A7 as a major regulator of EGFR provides a biological reason for the frequent parallel loss of chromosome 10 and gain of the EGFR gene in glioblastomas.

In the laboratory, Bredel tested the relationship between EGFR and Annexin A7 to try to understand exactly how they affected the tumor. Working with brain tumor cells, Bredel increased the level of EGFR and, in parallel, knocked out Annexin A7. The tumor cells grew much faster compared to tumor cells in which only one gene was modified.

"It's like a 'buy two, get one free' sale," Bredel said. "The tumor says, 'I'm making a good deal. I'm going to buy those two mutations because it's going to be very rewarding for me'."

With one mutation that increased EFGR and the other that eliminated chromosome 10 and Annexin A7, the tumor was free to proliferate unchecked.

"Understanding the key role of Annexin A7 in malignant brain tumors offers the opportunity for a new therapeutic target," Bredel said. "The challenge is now that we've established that this gene is important, how can we modulate it through molecular cancer therapy?"

"We want to extend the survival of the patients, transform this hyper-acute disease into a more chronic tumor disease," Bredel said. "Maybe someday, a glioblastoma patient will be able to live for 10 or 20 years after a diagnosis."

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>