Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Staying Cool Under Stress: Researchers Investigate Strategies

06.03.2009
Researchers at Arizona State University show that having a more flexible approach to resolving an acute conflict interaction results in more frustration and anger.

It is often assumed that remaining flexible by trying different strategies when negotiating a difficult interaction is optimal, but this may not be the case if the situation cannot be resolved. Researchers at Arizona State University show that having a more flexible approach to resolving an acute conflict interaction results in more frustration and anger.

These are among the findings that Danielle Roubinov, an ASU doctoral student in clinical psychology, will present at the American Psychosomatic Society Annual Meeting on March 4. Roubinov and two other ASU researchers observed a sample of 65 undergraduate students role-playing a stressful task with a “neighbor” who was portrayed by a research assistant (RA).

Participants were told that the neighbor was playing music too loudly and were instructed to ask the neighbor to turn down his or her music. During the interaction, the RAs followed a script of uncooperative responses such that the task could not be resolved.

“We categorized the verbal responses of participants during the task into seven types of negotiation strategies, including problem-solving and aggressive/threatening. Individuals who used a smaller set of strategies were considered less ‘flexible’ than those who used a greater variety of strategies,” Roubinov said.

The ASU team, which included Melissa Hagan, a doctoral student, and Linda Luecken, associate professor of psychology, also looked at the intensity of participants’ facial expressions of anger or frustration, and measured participants’ biological response to the task using cortisol, a stress hormone.

”Our results indicated that greater flexibility may not be the healthiest approach,” Roubinov said. “Unlike less-flexible participants, those who tried a greater variety of responses showed more intense facial expressions of anger and frustration. Cortisol levels in more flexible participants also reflected an unhealthier biological response to stress than the less flexible participants.”

The findings in “Flexibility in responding to interpersonal conflict predicts cortisol and emotional reactivity” suggest that in an uncontrollable situation, individuals who use a smaller variety of verbal responses to stress may have more favorable outcomes than those who use a greater variety of responses. “Although being flexible in how you respond to different situations may be beneficial, continuously trying different ways to work out the same situation may lead to greater anger, frustration, and an unhealthier biological response,” Roubinov said.

SOURCES:
Danielle Roubinov, droubinov@asu.edu
Melissa Hagan, melissa.hagan@asu.edu
Linda Luecken, luecken@asu.edu

Carol Hughes | Newswise Science News
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>