Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stay of execution

26.01.2009
A new twist on an old technique helps researchers identify proteins with a regulatory ‘death sentence’

The targeted destruction of specific proteins is an important means of regulation for many cellular pathways. This is typically managed through the process called ubiquitination, in which doomed proteins are chemically marked for entry into a degradation pathway by protein complexes known as ubiquitin ligases.

“Although the identification of substrates is essential for our understanding of cellular regulatory mechanisms involving ubiquitination, identifying them is quite difficult,” explains Tsutomu Kishi of the Advanced Science Institute in Wako, whose work on ubiquitin ligase target recognition via subunits known as ‘F-box proteins’ has been impeded by the limitations of existing tools for protein–protein interaction analysis.

One popular method is the ‘two-hybrid’ system, which uses a gene-activating protein that has been split into two pieces: one capable of binding to a target DNA sequence, and one capable of inducing activation. The first piece is fused to a ‘bait’ protein, while the second piece is fused to various ‘prey’ proteins; both bait and prey are then introduced into yeast cells with an indicator gene containing an appropriate binding site for the bait. The indicator is only turned on if the DNA-binding domain and gene activation domain become linked via prey–bait interaction, making it easy to identify such associations.

When working with ubiquitination targets, however, prey fusions are in danger of being marked for rapid destruction by the host cell before interactions can be detected. Kishi and colleagues therefore modified the assay so that it could be performed under conditions in which the relevant degradation pathways are disabled, enabling straightforward two-hybrid analysis of substrates from these pathways1.

Kishi’s team applied their method to Cdc4, a component of the SCFCdc4 ubiquitin ligase complex. They identified four interacting partners, but focused on Swi5, a protein that stimulates production of SIC1, a regulator that inhibits onset of S phase—and also a ubiquitination target. Subsequent experiments revealed that SCFCdc4 mediates a two-pronged process of SIC1 downregulation by first reducing levels of the activator protein Swi5, and then by inducing direct degradation of SIC1 itself.

These findings offer valuable insights into the regulation of the cell cycle and illustrate an important ‘indirect’ mechanism for ubiquitination-based regulation of protein levels via the targeting of relevant gene activators for destruction. They also demonstrate the effectiveness of a strategy that could be generalized for identifying other ubiquitination targets. “This methodology is widely applicable,” says Kishi, “and in collaboration with other groups, we have succeeded in identifying targets of other F-box proteins.”

Reference

1. Kishi, T., Ikeda, A., Koyama, N., Fukada, J. & Nagao, R. A refined two-hybrid system reveals that SCFCdc4-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry. Proceedings of the National Academy of Sciences USA 105, 14497–14502 (2008).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/628/

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>