Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starfish that clone themselves live longer

25.06.2015

Starfish that reproduce through cloning avoid ageing to a greater extent than those that propagate through sexual reproduction. This is shown by a new research study in which researchers from the University of Gothenburg participated. The study has recently been published in the highly respected journal Heredity.

In the study, researchers investigated the telomere lengths and population genetics of a starfish, Coscinasterias tenuispina. The telomeres are located at the ends of the chromosomes, and affect the lifespan and health of an individual.


Coscinasterias tenuispina starfish

University of Gothenburg

The studied starfish exhibited both asexual and sexual reproduction. Asexual reproduction, or cloning, involves the starfish dividing itself into two or more parts, after which the new parts regenerate.

The researchers wanted to find out whether the populations that clone themselves the most have better health and signs of delayed ageing in relation to the populations that carry out more sexual reproduction. Both Mediterranean and Atlantic populations were studied.

“Our results from the genetic markers show that the starfish are more inclined to clone themselves in the Mediterranean,” says Helen Nilsson Sköld from the University of Gothenburg’s Sven Lovén Centre for Marine Sciences in Kristineberg. “In actual fact, there only appears to be a single clone off the Spanish Costa Brava. In the Atlantic, however, sexual reproduction is more common.”

Better health and a longer lifespan without sexual reproduction
There turned out to be a clear positive link between long telomeres and the level of clonality.

“We also noted that the telomeres were longer in the newly formed tissue than in the ‘old’ tissue in the same starfish,” adds Helen, who – together with Bethanie Carney Almrort – was one of the two researchers in the group from the University of Gothenburg.

“According to the researchers, this rejuvenation of the telomeres in connection with the formation of new tissue during cloning is probably one of possibly several explanations behind the particularly good health and long telomeres of clones.”

The principle behind the study, that clones avoid ageing by regulating telomeres, has also been previously studied by other researchers in flatworms.

“The strengths of our study are that we have confirmed these results in a completely different animal group, and that our data comes from wild populations,” she concludes.
The study was published in the May issue of Heredity, and was a collaboration between Swedish and Spanish researchers, including both biologists and medical researchers.

Link to the article: http://www.nature.com/hdy/journal/vaop/ncurrent/pdf/hdy201543a.pdf

Contact:
Helen Nilsson Sköld, The Sven Lovén Centre for Marine Sciences, Kristineberg
The University of Gothenburg
Tel.: +46 (0)31 7869547, helen.skold@gu.se

Weitere Informationen:

http://www.gu.se/english/about_the_university/news-calendar/News_detail//starfis...

Henrik Axlid | idw - Informationsdienst Wissenschaft

Further reports about: Mediterranean genetic markers good health lifespan populations starfish telomeres

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>