Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Staph ‘Gangs’ Share Nutrients During Infection


Antibiotic-resistant bacteria can share resources to cause chronic infections, Vanderbilt University investigators have discovered. Like the individual members of a gang who might be relatively harmless alone, they turn deadly when they get together with their “friends.”

The findings, reported Oct. 8 in Cell Host & Microbe, shed light on a long-standing question in infectious diseases and may inform new treatment strategies, said Eric Skaar, Ph.D., MPH, Ernest W. Goodpasture Professor of Pathology, Microbiology and Immunology.

One way that Staphylococcus aureus and other pathogens can become resistant to antibiotics is by changing the way they generate energy and becoming “small colony variants,” which are small and weak, Skaar explained.

“The question has been: how do bacteria that are less fit and grow poorly in the laboratory cause such persistent infections in humans?”

The current studies support the notion that antibiotic-resistant staph bacteria, including methicillin-resistant (MRSA) strains, can exchange nutrients with each other and even with other bacterial species, including the “normal” microbes of the microbiome, to increase their virulence during an infection.

The findings challenge infectious disease dogma, Skaar said.

“The thinking has been that if an infection becomes resistant to antibiotics, then the resistant organisms appeared clonally, meaning they’re all genetically the same.”

Skaar and his colleagues wondered if perhaps instead “there are a bunch of organisms that became resistant in different ways and that can exchange the molecules they’re each individually missing.”

Two fellows in the lab, Neal Hammer, Ph.D., and James Cassat, M.D., Ph.D., now an assistant professor of Pediatrics at Vanderbilt, tested this hypothesis by mixing together two different small colony variant strains of staph – one that can’t produce heme and the other that can’t make menaquinone. They found that in culture, these strains exchanged the two metabolites and grew as if they were wild-type staph.

Next, they tested the idea in a mouse model of bone infection (osteomyelitis). Antibiotic-resistant small colony variant S. aureus is the cause of chronic and difficult to treat osteomyelitis and also of lung infections in patients with cystic fibrosis (CF).

The investigators demonstrated that either staph strain alone (heme- or menaquinone-deficient) caused only minimal bone infection, but mixed together, they caused a fully virulent and bone-destroying infection.
“In bone, these bacteria are trading molecules,” Skaar said.

In collaboration with C. Buddy Creech, M.D., MPH, associate professor of Pediatrics, the researchers isolated samples of staph small colony variants and normal bacteria from the lungs of CF patients.

When individual CF staph small colony variants were mixed together in culture, they grew like wild-type bacteria. Likewise, co-culture of CF staph small colony variants with normal microbiome bacterial species also enhanced the growth of staph in culture.

“The microbiome of a cystic fibrosis patient’s lungs can provide nutrients to these small colony variants and revert them to wild-type behavior,” Skaar said.

“Our findings show that these antibiotic-resistant infections are not what we thought they were – they’re not a single strain of bacteria with a single lesion leading to the small colony variant phenotype,” he said. “Instead, they’re a mixed population of organisms that are sharing nutrients.

“They act like a big group of bullies until you hit them with drugs, then they stop sharing resources and are resistant. When the drugs go away, they start sharing resources again and get even tougher.

“We’re now a little bit smarter about how these organisms are behaving in an infection, which I think we can use to inform new treatment approaches.”

Preventing the nutrient exchange, for example, may offer a new therapeutic strategy against these antibiotic-resistant organisms, Skaar said.

This research was supported by grants from the National Institutes of Health (AI073843, AI069233, HD060554, AI113107).

Contact Information

Craig Boerner
Media Director
Phone: 615-322-4747

Craig Boerner | newswise
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>