Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists turn stem cells into precursors for sperm, eggs

29.10.2009
Human embryonic stem cells derived from excess IVF embryos may help scientists unlock the mysteries of infertility for other couples struggling to conceive, according to new research from the Stanford University School of Medicine.

Researchers at the school have devised a way to efficiently coax the cells to become human germ cells — the precursors of egg and sperm cells — in the laboratory. Unlike previous research, which yielded primarily immature germ cells, the cells in this most-recent study functioned well enough to generate sperm cells.

"Ten to 15 percent of couples are infertile," said senior author Renee Reijo Pera, PhD. "About half of these cases are due to an inability to make eggs or sperm. And yet deleting or increasing the expression of genes in the womb to understand why is both impossible and unethical. Figuring out the genetic 'recipe' needed to develop human germ cells in the laboratory will give us the tools we need to trace what's going wrong for these people." Reijo Pera is a professor of obstetrics and gynecology at the medical school and the director of Stanford's Center for Human Embryonic Stem Cell Research and Education. The study will be published online by Nature on Oct. 28.

Previous efforts to study infertility have been hampered by the fact that — unlike many other biological processes — the human reproductive cycle cannot be adequately studied in animal models. And because germ cells begin to form very early in embryonic development (by eight to 10 weeks), there's been a dearth of human material to work with. "Humans have a unique reproductive system," Reijo Pera said. "Until now we've relied on studies in mice to understand human germ cell differentiation, but the reproductive genes are not the same. This is the first evidence that you can create functional human germ cells in a laboratory."

The scientists built on previous research in the mid-1990s by Reijo Pera that identified a number of genes involved in male infertility. Members of what's called the DAZ family, the genes are unusual in that they encode RNA-binding proteins rather than the DNA transcription factors more commonly known to regulate cellular events.

In the current study, the researchers treated human embryonic stem cells with proteins known to stimulate germ cell formation and isolated those that began to express germ-cell-specific genes — about 5 percent of the total. In addition to expressing key genes, these cells also began to remove modifications, or methyl groups, to their DNA that confer cell-specific traits that would interfere with their ability to function as germ cells. Such epigenetic reprogramming is a hallmark of germ cell formation.

They then used a technique called RNA silencing to examine how blocking the expression of each of three DAZ family members in the embryonic stem cells affected germ cell development. Conversely, they also investigated what happened when these genes were overexpressed.

They found that one family member, DAZL, functions very early in germ cell development, while two others, DAZ1 and BOULE, stimulate the then-mature germ cells to divide to form gametes. Overexpressing the three proteins together allowed the researchers to generate haploid cells — those with only one copy of each chromosome — expressing proteins found in mature sperm. (When a sperm and an egg join, the resulting fertilized egg again has two copies of each chromosome.) When treated in this manner, about 2 percent of the differentiated human embryonic stem cells were haploid after 14 days of differentiation.

The effect of the DAZ family members on the embryonic stem cells varied according to whether the cells were derived from a male or a female embryo. Overexpression of BOULE increased the relative proportion of putative germ cells from 2 to 12 percent in female, but not male, cell lines. This suggests that BOULE may play a larger role than the other proteins in the development of female germ cells.

The researchers plan to use a similar strategy to optimize the production of eggs from embryonic stem cells, as well as investigating whether reprogrammed adult cells called induced pluripotent cells, or iPS cells, can also be used to create germ cells. By charting the milestones of gamete development, they hope to identify potential problems that would lead to infertility or fetal disability.

"Although most of our birth defects are caused by problems in the development of eggs or sperm," said Reijo Pera, "it's not clear why there are so many errors. This research gives us a system we can use to compare errors in the germ line vs. somatic cells. For instance, we can now begin to directly investigate the effects of environmental toxins on germ cell differentiation and gamete development. We've already seen that, even in a dish, germ cells appear to be more sensitive to these compounds."

In addition to Reijo Pera, other Stanford researchers involved in the study include postdoctoral scholar Kehkooi Kee, PhD; graduate student Vanessa Angeles; and research assistants Martha Flores and Ha Nam Nguyen. The research was funded by the National Institutes of Health, the California Institute for Regenerative Medicine and the Tobacco-Related Disease Research Program.

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>