Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists identify molecular powerbrokers involved in cancer's spread

02.06.2009
You know the guy — he's your Facebook friend. The one who knows everyone. Secure at the center of a dense web of relationships, he suggests causes and reconnects old friends like a skilled matchmaker.

Scientists have known for some time that biological molecules interact with one another in a similarly complex pattern. Now researchers at the Stanford University School of Medicine have determined that hamstringing these molecular powerbrokers is a good way to derail processes such as cancer development.

"It's like social networking," said Paul Khavari, MD, PhD, professor of dermatology at the medical school. "If you take the most highly interconnected person and somehow hinder his access to a computer, the network may fall apart." Although the Stanford researchers were focusing on tumor invasion and metastasis, their expectation is that a similar approach could be used to identify potential targets for many different diseases.

Khavari, who is also a member of Stanford's Cancer Center and Bio-X, is the senior author of the research, which will be published in the June issue of Cancer Cell. He is also the clinical chief of the dermatology service at the Veterans Affairs Palo Alto Health Care System.

Khavari and genetics graduate student Jason Reuter used the concept of biological networks to investigate how cancers progress from a growing lump of unruly cells to an invasive, potentially deadly tumor. They found that inhibiting a molecule called beta-1 integrin blocked the ability of the cells to grow and invade surrounding tissue.

"Ninety percent of all human tumors, including breast, lung, prostate, colon, pancreatic and skin cancers, arise in the epithelial tissue that lines body surfaces," said Khavari. "None of these tumors become highly dangerous to a person unless they invade through the underlying basement membrane and begin to spread to other tissue."

To conduct the research, Khavari and Reuter devised the first-ever three-dimensional model of inducible human tissue tumor development by grafting genetically engineered human skin tissue onto mice with compromised immune systems. They then treated the mice with a compound that activated an introduced cancer-causing gene in the modified human tissue, and monitored gene expression in the tumor and the surrounding tissue as the skin cancer developed and began to invade.

"This approach has been able to recapitulate in real time the progression from normal epithelial tissue to invasive cancer," said Khavari, "and now this model is being used to systematically identify the key genes in this process." He and Reuter identified more than 700 genes whose expression patterns deviated from normal during cancer development. They used an existing database to map the genes into functional networks, which varied as the tumor developed.

"A specific set of genes emerged during early tumor development," said Khavari, "which gave way to others as the tumor began to invade surrounding tissue." During early growth, for example, the researchers identified networks in the cancer cells that were involved in cell division and in the surrounding tissue that were involved in the formation of blood vessels to feed the growing tumor. As the cancer progressed, they saw the emergence of networks involved in cell movement and attachment and in remodeling of the extracellular matrix.

As in the Facebook example, the researches focused on those gene products in the networks that were the most highly connected. Sixteen of the top 25 molecules are found either on the surface or between the tumor cells, indicating that the tumor is actively involved in remodeling its surrounding environment. Beta-1 integrin, a member of a family of proteins involved in mediating attachments between cells, was the third-most well-connected. Khavari and Reuter found that blocking the activity of beta-1, which has been implicated in the growth of several human cancer cell lines, slowed the growth of both established and newly developing tumors in their model and seemed to lead to a more clearly defined border between the tumor cells and the surrounding normal tissue.

"Beta-1 integrin proved important in the co-evolution of the tumor and its supporting framework, the stroma, toward malignancy," said Khavari. He and his lab members plan to continue their analysis of other genes in the network, and to try to optimize their model for other types of cells and cancers. "We are working to build models like this for many other epithelial tissues so we can begin to identify the underlying global mediators of cancer progression."

In addition to Khavari and Reuter, other Stanford researchers involved in the study include postdoctoral scholars Susana Ortiz-Urda, MD, PhD; Anna Pasmooij, PhD; and Markus Kretz, PhD; graduate student John Garcia; research associate Florence Scholl, PhD; and associate professor of dermatology Howard Chang, MD, PhD. The research was funded by the Veterans Affairs Office of Research and Development and by the National Institutes of Health.

The Stanford University School of Medicine consistently ranks among the nation's top 10 medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>