Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists identify key component in cell replication

02.02.2009
Last week, a presidential limousine shuttled Barack Obama to the most important job in his life.

Scientists at the Stanford University School of Medicine have now identified a protein that does much the same for the telomerase enzyme — ferrying the critically important clump of proteins around to repair the ends of chromosomes that are lost during normal replication. Without such ongoing maintenance, stem cells would soon cease dividing and embryos would fail to develop.

"This is the first new protein component of telomerase that has been identified in 10 years," said Steven Artandi, MD, PhD, associate professor of hematology. "And it's likely to be a valuable target for anti-cancer therapies."

Artandi is the senior author of the research, which will be published in the Jan. 30 issue of Science. Graduate student Andrew Venteicher is the first author. The two collaborated with scientists at the National Cancer Institute-Frederick and the University of Georgia to conduct the research.

Telomerase is normally expressed in adult stem cells and immune cells, as well as in cells of the developing embryo. In these cells, the enzyme caps off the ends of newly replicated chromosomes, allowing unfettered cell division. Without telomerase, cells stop dividing or die within a limited number of generations. Unfortunately, the enzyme is also active in many cancer cells. Artandi and his collaborators found that blocking the inappropriate expression of the protein, called TCAB1, in human cancer cells keeps telomerase from reaching its DNA targets, called telomeres, and may limit the cell's life span.

"There are currently no effective telomerase inhibitors," said Artandi. "We've never really understood before how the enzyme gets to the telomeres; it's been a complete black box. Now we're starting to piece together how it happens, and that gives us more opportunities to interfere with its function."

Telomerase has been subject of intense research for years, but scientists have been stymied by the enzyme's large size and extreme rarity. Few cells in the adult body make the huge protein complex, and even they make only tiny amounts. As a result, only some members have been identified.

"It's been incredibly challenging to figure out all the protein components of telomerase," said Artandi, who refers to the unknown members of the complex as "dark matter." "We know how big the enzyme is, and it's clear that the known components don't add up to the total. Now we've identified one more member."

The researchers used a highly sensitive protein identification technique called mass spectrometry to ferret out TCAB1's presence in telomerase based on its ability to bind to another, known component of the enzyme. Early last year, Artandi's lab used the same technique to identify for the first time two other proteins — pontin and reptin — that are important for assembling the massive complex. This time around they identified TCAB1, a protein of previously unknown function.

Unlike pontin and reptin, TCAB1 is a true component of telomerase. But it's not required for the enzyme's activity. Rather, it recruits the telomerase complex to processing and holding areas in the nucleus of the cell called Cajal (pronounced "cuh-hall") bodies. Like a high-end garage, Cajal bodies apply the finishing touches to a variety of proteins that use small molecules of RNA to conduct their activities (telomerase, for example, uses an RNA molecule as a template for the DNA chain it tacks onto the ends of chromosomes). When appropriate, TCAB1 then chauffeurs the telomerase complex to the waiting end of a newly replicated chromosome.

"TCAB1 is absolutely necessary for the telomerase to make this jump from Cajal bodies to telomeres," said Artandi. "When we inhibited its activity in human cancer cells, the telomeres grew shorter," implying the cancer cells would die more quickly.

Prior to this study, TCAB1 had no known function. "Andy [Venteicher] found that TCAB1 binds not only telomerase, but also a specific class of small, non-coding RNA molecules that also end up in the Cajal bodies," said Artandi. He added that the protein may be a common biological shuttle responsible for delivering a variety of molecules to their destinations. He and his collaborators plan to continue their study of TCAB1 and also to identify other telomerase components.

"This is a story that's been unfolding over decades," said Artandi. "Telomerase is such a high-priority target for many diseases, but it's hard to attack when you know very little about it. But that's changing now."

Krista Conger | EurekAlert!
Further information:
http://www.stanford.edu
http://mednews.stanford.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>